3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis.

Phytochemistry

Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, 305 Alderman Hall, 1970 Folwell Ave, St. Paul, MN, 55108, USA. Electronic address:

Published: June 2017

Honey bees, Apis mellifera, collect antimicrobial plant resins from the environment and deposit them in their nests as propolis. This behavior is of practical concern to beekeepers since the presence of propolis in the hive has a variety of benefits, including the suppression of disease symptoms. To connect the benefits that bees derive from propolis with particular resinous plants, we determined the identity and botanical origin of propolis compounds active against bee pathogens using bioassay-guided fractionation against the bacterium Paenibacillus larvae, the causative agent of American foulbrood. Eleven dihydroflavonols were isolated from propolis collected in Fallon, NV, including pinobanksin-3-octanoate. This hitherto unknown derivative and five other 3-acyl-dihydroflavonols showed inhibitory activity against both P. larvae (IC = 17-68 μM) and Ascosphaera apis (IC = 8-23 μM), the fungal agent of chalkbrood. A structure-activity relationship between acyl group size and antimicrobial activity was found, with longer acyl groups increasing activity against P. larvae and shorter acyl groups increasing activity against A. apis. Finally, it was determined that the isolated 3-acyl-dihydroflavonols originated from Populus fremontii, and further analysis showed these compounds can also be found in other North American Populus spp.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2017.02.020DOI Listing

Publication Analysis

Top Keywords

honey bees
8
active bee
8
bee pathogens
8
paenibacillus larvae
8
ascosphaera apis
8
activity p larvae
8
acyl groups
8
groups increasing
8
increasing activity
8
propolis
5

Similar Publications

Due to the increase in data rate in mobile communication and the widespread use of mobile internet, electromagnetic communication systems are increasing daily. This situation causes increases in the use of more mobile communication devices and environmental non-ionizing Electromagnetic Field (EMF) levels. The rise of bee deaths and colony losses in beekeeping parallel to the increase of the EMF sources cause the concept of "electromagnetic pollution" to be considered among the reasons.

View Article and Find Full Text PDF

Current status of toxicological research on stingless bees (Apidae, Meliponini): Important pollinators neglected by pesticides' regulations.

Sci Total Environ

December 2024

Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay. Electronic address:

Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes.

View Article and Find Full Text PDF

Stingless bee honey is a natural product consisting of sugars, organic acids, proteins, minerals, vitamins, phenolic compounds, and flavonoids. Due to its healing properties, honey is often used in phytotherapy and for homemade syrups. The search for natural therapeutic alternatives has been an increasing trend in recent years, mainly due to the side effects of artificial drugs and increasing antibiotic resistance.

View Article and Find Full Text PDF

Varroa species, commonly known as the honey bee mites, poses a significant challenge to the worldwide beekeeping industry. The aim of this study was to investigate the effect of haplotype variation on morphology of Varroa destructor. Forty-one apiaries across Bingol province (Türkiye) and its districts were visited using random sampling to examine 2440 honey bee colonies.

View Article and Find Full Text PDF

Insecticide application prevents honey bees from realizing benefits of native forage in an agricultural landscape.

Sci Total Environ

December 2024

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA. Electronic address:

Health and population status of bees is negatively affected by anthropogenic stressors, many of which co-occur in agricultural settings. While pollinator habitat (often involving plantings of native forbs) holds promise to benefit both managed and wild bees, important issues remain unresolved. These include whether conventional, broad-spectrum insecticide use negates these benefits and how non-native, managed honey bees affect wild bees in these areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!