Introduction: Considering the high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborns, different screening methods have been established in various countries. In this study, we aimed to assess the prevalence of G6PD deficiency among newborns in Rasht, Iran, and compare G6PD activity in cord blood samples, using quantitative and qualitative tests.

Methods: This cross-sectional, prospective study was performed at five largest hospitals in Rasht, Guilan Province, Iran. The screening tests were performed for all the newborns, referred to these hospitals. Specimens were characterized in terms of G6PD activity under ultraviolet light, using the kinetic method and the qualitative fluorescent spot test (FST). We also determined the sensitivity, specificity, negative predictive value, and positive predictive value of the qualitative assay.

Results: Blood samples were collected from 1474 newborns. Overall, 757 (51.4%) subjects were male. As the findings revealed, 1376 (93.4%) newborns showed normal G6PD activity, while 98 (6.6%) had G6PD deficiency. There was a significant difference in the mean G6PD level between males and females (P = 0.0001). Also, a significant relationship was detected between FST results and the mean values obtained in the quantitative test (P < 0.0001).

Conclusion: According to the present study, FST showed acceptable sensitivity and specificity for G6PD activity, although it appeared inefficient for diagnostic purposes in some cases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.12618DOI Listing

Publication Analysis

Top Keywords

g6pd activity
16
g6pd deficiency
12
quantitative qualitative
8
glucose-6-phosphate dehydrogenase
8
g6pd
8
deficiency newborns
8
blood samples
8
sensitivity specificity
8
newborns
5
comparison quantitative
4

Similar Publications

Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.

Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.

View Article and Find Full Text PDF

Background: The WHO malaria treatment guidelines recommend a total dose in the range of 3·5 to 7·0 mg/kg of primaquine to eliminate ( ) hypnozoites and prevent relapses. There are however indications that for tropical isolates, notably from Southeast Asia, the lower dose of 3·5 mg/kg is insufficient. Determining the most effective regimen to eliminate hypnozoites is needed to achieve elimination of this malaria parasite.

View Article and Find Full Text PDF

NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming.

Cell Signal

January 2025

Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:

Article Synopsis
  • Pulmonary artery hypertension (PAH) exhibits a metabolic shift towards aerobic glycolysis, resembling cancer metabolism, and involves the role of NSD2, though its exact function is not fully understood.
  • Increased expression of FOLR1 in PAH tissues was linked to NSD2, and silencing either NSD2 or FOLR1 inhibited cell proliferation and the progression of PAH.
  • The study found that NSD2 influences the activity of FOLR1, affecting glycolytic gene expression and metabolic processes in pulmonary artery endothelial cells, suggesting a potential pathway for therapeutic intervention in PAH.
View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!