AI Article Synopsis

  • * This mutant gene is located on chromosome 3HL, specifically in a 1.3-cM region between the genes MLOC_10972 and MLOC_69561.
  • * The wild type version of this gene likely plays a role in the synthesis pathway of β-diketone compounds, which contribute to the plants' waxy appearance.

Article Abstract

The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient in the cuticular wax component 14,16-hentriacontanedione. The mutated gene maps to a 1.3-cM interval on chromosome 3HL flanked by the genes MLOC_10972 and MLOC_69561. The cuticular wax coating of leaves and stems in many grass species is responsible for the plants' glaucous appearance. A major component of the wax is a group of β-diketone compounds. The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient for the compound 14,16-hentriacontanedione. A linkage analysis based on 708 gametes allowed the gene responsible for the mutant phenotype to be mapped to a 1.3-cM interval on chromosome 3HL flanked by the two genes MLOC_10972 and _69561. The product of the wild type allele may represent a step in the β-diketone synthesis pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-017-2877-5DOI Listing

Publication Analysis

Top Keywords

barley eceriferum-b2
8
eceriferum-b2 cer-b2
8
cer-b2 mutant
8
mutant produces
8
produces glossy
8
glossy leaf
8
leaf sheaths
8
sheaths deficient
8
cuticular wax
8
13-cm interval
8

Similar Publications

Biotic stresses such as fungal pathogens significantly affect global crop yields. Understanding of the plant-pathogen interactions during root infection, especially in monocot crops, remains limited compared to fungal colonizations of dicots. The infection process of several cereal crop root-damaging fungi and oomycetes is highly similar to root infections by the pathogen model Phytophthora palmivora.

View Article and Find Full Text PDF

The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.

View Article and Find Full Text PDF

The increasing contamination of cereals by micromycetes and mycotoxins during malting still poses an unresolved food safety problem. This study characterises the potential of the novel, rapidly developing food production technology of Pulsed Electric Field (PEF) to reduce the viability of fungi and the production of mycotoxins during malting. Barley, artificially inoculated with four species, was treated by PEF with two different intensities and then malted using a standard Pilsner-type technology.

View Article and Find Full Text PDF

Antihypertensive Effect of Perla and Esmeralda Barley ( L.) Sprouts in an Induction Model with L-NAME In Vivo.

Metabolites

December 2024

Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Eliseo Ramírez Ulloa 400, Doctores Pachuca, Pachuca 42090, Hidalgo, Mexico.

Hypertension is one of the leading causes of premature death worldwide. Despite advances in conventional treatments, there remains a significant need for more effective and natural alternatives to control hypertension. In this context, sprouted barley extracts have emerged as a potential therapeutic option.

View Article and Find Full Text PDF

In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!