Interaction Between Methicillin-Resistant Staphylococcus aureus (MRSA) and Acanthamoeba polyphaga.

Curr Microbiol

Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Setor de Parasitologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, N° 500, Porto Alegre, RS, Brazil.

Published: May 2017

The interactions that occur between bacteria and amoebae can give through mutual relations, where both organisms benefit from the association or parasitic in which one organism benefits at the expense of the other. When these organisms share the same environment, it can result in some changes in the growth of organisms, in adaptation patterns, in morphology, development or even in their ability to synthesize proteins and other substances. In this study, the interaction between Acanthamoeba polyphaga and Staphylococcus aureus (MRSA) was evaluated using a co-culture model at different incubation times. The results showed that 89% of amoebic cells remained viable after contact with the bacteria. The bacterial isolate was visualized inside the amoeba through confocal microscopy and fluorescence for up to 216 h of co-cultivation. The lysate of amoebic culture increased the growth of S. aureus (MRSA), and the effect of supernatant of culture inhibited bacterial growth over the incubation times, suggesting that A. polyphaga produced some metabolite, that inhibited the growth of bacteria. Moreover, the encystment of the A. polyphaga was increased by the bacteria presence. The results show that A. polyphaga and S. aureus interaction may have an important influence on survival of both, and specially indicate a possible effect on the metabolics characteristics each other.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-017-1196-zDOI Listing

Publication Analysis

Top Keywords

aureus mrsa
12
staphylococcus aureus
8
acanthamoeba polyphaga
8
incubation times
8
polyphaga
5
interaction methicillin-resistant
4
methicillin-resistant staphylococcus
4
aureus
4
mrsa acanthamoeba
4
polyphaga interactions
4

Similar Publications

Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.

View Article and Find Full Text PDF

Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived .

JACS Au

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements.

View Article and Find Full Text PDF

Introduction: Methicillin-resistant (MRSA) colonization in neonatal intensive care units (NICUs) is a significant global health concern, leading to severe infections, extended hospital stays, and substantial economic burdens on health-care systems. To develop effective infection control strategies, we need to fill existing gaps in our understanding of MRSA epidemiology in neonates. The aim of this systematic review is to provide an extensive analysis of the proportion of MRSA colonizations in NICUs.

View Article and Find Full Text PDF

The growing problem of antibiotic resistance has driven the search for new sources of antimicrobial agents. Plants, particularly those from the Malvaceae family, have showed promising potential in this field. The present study is based on extracts, and the antimicrobial action was assessed using and as experimental bacterial strains.

View Article and Find Full Text PDF

Changing dynamics of bloodstream infections due to methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium in Germany, 2017-2023: a continued burden of disease approach.

Antimicrob Resist Infect Control

January 2025

Unit 37: Healthcare-Associated Infections, Surveillance of Antibiotic Resistance and Consumption, Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.

Background: Antimicrobial resistance is a global threat to public health, with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREfm) being major contributors. Despite their clinical impact, comprehensive assessments of changes of the burden of bloodstream infections in terms of Disability-Adjusted Life Years (DALYs) and attributable deaths over time are lacking, particularly in Germany.

Methods: We used data from the Antimicrobial Resistance Surveillance system, which covered about 30% of German hospitals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!