The Fluc family of proteins comprises small, electrodiffusive fluoride channels, which prevent accumulation of toxic F ions in microorganisms. Recent crystal structures have confirmed their unusual architecture, in which a pair of antiparallel subunits convenes to form a dimer with a twofold symmetry axis parallel to the plane of the membrane. These structures have also revealed the interactions between Fluc channels and several different fibronectin domain monobodies that inhibit Fluc-mediated F currents; in all structures, each channel binds to two monobodies symmetrically, one on either side of the membrane. However, these structures do not reveal the mechanism of monobody inhibition. Moreover, the results appear to diverge from a recent electrophysiological study indicating that monobody binding is negatively cooperative; that is, a bound monobody on one side of a Fluc channel decreases the affinity of an oppositely bound monobody by ∼10-fold. In this study, we reconcile these observations by probing the mechanism of monobody binding and its negative cooperativity using electrophysiological experiments in planar lipid bilayers. Our results indicate that monobody inhibition occurs via a pore-blocking mechanism and that negative cooperativity arises from electrostatic repulsion between the oppositely bound monobodies. A single glutamate residue, on a loop of the monobody that extends into the channel interior, is responsible for negatively cooperative binding. This glutamate side chain also confers voltage dependence and sensitivity to the concentration of trans-F ion to monobody binding. Neutralization by mutation to glutamine abolishes these electrostatic effects. Monobodies that are amenable to cocrystallization with Fluc channels lack an analogous negatively charged side chain and bind independently to opposite sides of the channel. Thus, this work reveals the source of voltage dependence and negative cooperativity of monobody binding to Fluc channels along with the pore-blocking mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379923 | PMC |
http://dx.doi.org/10.1085/jgp.201611747 | DOI Listing |
Nat Commun
December 2024
Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
Biologically produced protein drugs are generally susceptible to degradation by proteases and often exhibit immunogenicity. To address this issue, mirror-image peptide/protein binders consisting of D-amino acids have been developed so far through the mirror-image phage display technique. Here, we develop a mirror-image protein binder derived from a monobody, one of the promising protein scaffolds, utilizing two notable technologies: chemical protein synthesis and TRAP display, an improved version of mRNA display.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany.
ACS Synth Biol
December 2024
Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States.
Transmembrane receptors that endow mammalian cells with the ability to sense and respond to biomaterial-bound ligands will prove instrumental in bridging the fields of synthetic biology and biomaterials. Materials formed with thiol-norbornene chemistry are amenable to thiol-peptide patterning, and this study reports the rational design of synthetic receptors that reversibly activate cellular responses based on peptide-ligand recognition. This transmembrane receptor platform, termed Extracellular Peptide-ligand Dimerization Actuator (EPDA), consists of stimulatory or inhibitory receptor pairs that come together upon extracellular peptide dimer binding with corresponding monobody receptors.
View Article and Find Full Text PDFCell Commun Signal
October 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany.
Background: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells.
View Article and Find Full Text PDFOncogene
November 2024
Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!