Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Oxidative stress plays an important role in the development and progression of diabetic nephropathy (DN). We aimed to investigate if resveratrol (RSV) could ameliorate hyperglycemia-induced oxidative stress in renal tubules via modulating the SIRT1/FOXO3a pathway.
Methods: The effects of RSV on diabetes rats were assessed by periodic acid-Schiff, Masson staining, immunohistochemistry, and western blot analyses. Additionally, oxidative indicators (such as catalase, superoxide dismutase, reactive oxygen species, and malondialdehyde), the deacetylase activity of SIRT1 and protein expressions of SIRT1, FOXO3a, and acetylated-FOXO3a were measured. These indicators were similarly evaluated in an in vitro study. Furthermore, the silencing of SIRT1 was used to confirm its role in the resistance to oxidative stress and the relationship between SIRT1 and FOXO3a in vitro.
Results: After 16weeks of RSV treatment, the renal function and glomerulosclerosis of rats with DN was dramatically ameliorated. RSV treatment increased SIRT1 deacetylase activity, subsequently decreasing the expression of acetylated-FOXO3a and inhibiting the oxidative stress caused by hyperglycemia both in vivo and in vitro. The silencing of SIRT1 in HK-2 cells aggravated the high glucose-induced oxidative stress and overexpression of acetylated-FOXO3a; RSV treatment failed to protect against these effects.
Conclusions: RSV modulates the SIRT1/FOXO3a pathway by increasing SIRT1 deacetylase activity, subsequently ameliorating hyperglycemia-induced renal tubular oxidative stress damage. This mechanism provides the basis for a new approach to developing an effective DN treatment, which is of great clinical significance for reducing the morbidity and mortality associated with DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diabres.2016.12.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!