Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?

Dev Comp Immunol

Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands. Electronic address:

Published: October 2017

Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2017.02.022DOI Listing

Publication Analysis

Top Keywords

immune responses
16
cyprinid fish
8
fish species
8
transcriptome analyses
8
understanding complex
8
complex physiological
8
physiological processes
8
responses cyprinids
8
ngs technologies
8
functional divergence
8

Similar Publications

Background: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.

View Article and Find Full Text PDF

Early investigation revealed a reduced risk of SARS-CoV-2 infection among social contacts of COVID-19 vaccinated individuals, referred to as indirect protection. However, indirect protection from SARS-CoV-2 infection-acquired immunity and its comparative strength and durability to vaccine-derived indirect protection in the current epidemiologic context of high levels of vaccination, prior infection, and novel variants are not well characterized. Here, we show that both vaccine-derived and infection-acquired immunity independently yield indirect protection to close social contacts with key differences in their strength and waning.

View Article and Find Full Text PDF

Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein, the main target of neutralizing antibodies. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history.

View Article and Find Full Text PDF

Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order. Infections in bats are largely asymptomatic, indicating limited tissue-damaging inflammation and immunopathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!