Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors.

Pharmacol Biochem Behav

Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA. Electronic address:

Published: November 2018

Midbrain dopamine (DA) neurons have received significant attention in brain research because of their central role in reward processing and their dysfunction in neuropsychiatric disorders such as Parkinson's disease, drug addiction, depression and schizophrenia. Until recently, it has been thought that DA neurons form a homogeneous population whose primary function is the computation of reward prediction errors. However, through the implementation of viral vector strategies, an unexpected complexity and diversity has been revealed at the anatomical, molecular and functional level. In this review, we discuss recent viral vector approaches that have been leveraged to dissect how different circuits involving distinct DA neuron subpopulations may contribute to the role of DA in reward- and aversion-related behaviors. We focus on studies that have used cell type- and projection-specific optogenetic manipulations, discuss the strengths and limitations of each approach, and critically examine emergent organizational principles that have led to a reclassification of midbrain DA neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7172338PMC
http://dx.doi.org/10.1016/j.pbb.2017.02.006DOI Listing

Publication Analysis

Top Keywords

viral vector
12
vector strategies
8
midbrain dopamine
8
strategies investigating
4
investigating midbrain
4
dopamine circuits
4
circuits underlying
4
underlying motivated
4
motivated behaviors
4
behaviors midbrain
4

Similar Publications

Pseudorabies virus (PRV), causing Aujeszky's disease in swine, has important economic impact on the pig industry in China and even poses a threat to public health. Although this disease has been controlled by vaccination with PRV live attenuated vaccines (LAVs), the potency of PRV LAVs in inducing cellular immunity has not been well characterized. In this study, using PRV Bartha K61 strain (BK61), the most-used PRV LAVs, as a model, we re-examined the cellular immune response elicited by the BK61 in mice and pigs by multicolor flow cytometry.

View Article and Find Full Text PDF

A total of 164 viruses have been identified in peppers worldwide. To combat viruses, pathogen-derived resistance (PDR) has been employed by expressing a viral genomic segment or a viral protein in host plants. Unfortunately, peppers are recalcitrant to genetic transformation and regeneration.

View Article and Find Full Text PDF

Background: Dengue fever (DF) is a mosquito-borne viral infection that has recently become a burden worldwide, particularly in low-income countries, such as Yemen. There have been no epidemiological studies on DF in recent years in Yemen. Therefore, based on secondary data, this study aimed to shed light on the epidemiology of DF in Yemen between 2020 and 2024.

View Article and Find Full Text PDF

Next-generation vaccines for influenza B virus: advancements and challenges.

Arch Virol

January 2025

CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.

To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes.

View Article and Find Full Text PDF

Enhancing virus-mediated genome editing for cultivated tomato through low temperature.

Plant Cell Rep

January 2025

Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.

Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!