In spinal cord injury (SCI), oxidative stress in the penumbra of the injury site is a characteristic feature. The predominance of necrosis over apoptosis in the ensuing delayed cell death results in progressive waves of necrosis affecting neighboring cells and thus exaggerates the severity of the lesion. Necrosis has been classified into subtypes based on the active molecular players and parthanatos is one among them, which is characterized by the over activation of PARP1 as the pre-mitochondrial event that triggers necrosis. Parthanatos being the necrosis mode reported in SCI, we intended to study the molecular players in the elusive pre-mitochondrial events of PARP1 over activation using an in vitro model. tert-Butylhydroperoxide (tBuOOH) was reported to induce oxidative stress in various cell types including Neuro-2A cells. Using a tailored protocol, a predominantly PARP1 mediated necrotic mode of cell death was obtained in Neuro-2A cells using tBuOOH. By perturbing the progress of necrosis using 3-amniobenzamide, a known PARP1 inhibitor, it was found that JNK1 and JNK3 but not JNK2 were involved in pre-mitochondrial stages of PARP1 mediated cell death. Given that JNK1 and JNK3 play a role in apoptosis also, they may serve as common targets to counter both apoptosis and necrosis. The in vitro model used in the present study may be useful in delineating molecular mechanisms in necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2017.02.015DOI Listing

Publication Analysis

Top Keywords

jnk1 jnk3
12
oxidative stress
12
neuro-2a cells
12
cell death
12
necrosis
9
jnk3 play
8
play role
8
apoptosis necrosis
8
molecular players
8
vitro model
8

Similar Publications

Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis.

View Article and Find Full Text PDF

Anticancer and anti-inflammatory effects of novel ethyl pyrazole derivatives having sulfonamide terminal moiety.

Bioorg Chem

December 2024

Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza, Egypt.

In the present work, a new series of ethyl pyrazole-containing compounds with side sulphonamide moiety was designed and synthesized. The new derivatives were divided into four groups based on the linker between the sulphonamide and pyridine ring attached to position 4 of the pyrazole ring and the substitution on the phenyl ring at position 3 of the same ring. The linker could be ethyl or propyl linkers.

View Article and Find Full Text PDF

Selective Covalent Inhibiting JNK3 by Small Molecules for Parkinson's Diseases.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China.

c-Jun N-terminal kinases (JNKs) including JNK1/2/3 are key members of mitogen-activated protein kinase family. Wherein JNK3 is specifically expressed in brain and emerges as therapeutic target, especially for neurodegenerative diseases. However, developing JNK3 selective inhibitors as chemical probes to investigate its therapeutic potential in diseases remains challenging.

View Article and Find Full Text PDF

The selective disruption of the JNK2/Syntaxin-1A interaction by JGRi1 protects against NMDA-evoked toxicity in SH-SY5Y cells.

Neurochem Int

October 2024

EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy. Electronic address:

N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets.

View Article and Find Full Text PDF

The increasing frequency of high-temperature extremes threatens largemouth bass Micropterus salmoides, a significant fish for freshwater ecosystems and aquaculture. Our previous studies at the transcript level suggested that heat stress induces hepatic apoptosis in largemouth bass. In the current study, we sought to validate these findings and further investigate the role of the c-Jun N-terminal kinase (JNK)/P53 signaling in hepatic apoptosis under heat stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!