Force degradation of orthodontic latex elastics: An in-vivo study.

Am J Orthod Dentofacial Orthop

Department of Preventive Dentistry, Division of Orthodontics, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan.

Published: March 2017

Introduction: Our objectives were to assess the force degradation of orthodontic latex elastics over 48 hours in vivo and to study the relationship between the amount of mouth opening and the degree of force decay.

Methods: Fifty-two orthodontic patients wearing fixed appliances using Class II elastics were asked to wear premeasured-force 3/16-in heavy and medium intermaxillary elastics. The force amounts were measured and compared at different time intervals.

Results: Fifty percent of the force was lost after 3.9 hours for the medium elastics and after 4.9 hours for the heavy elastics. A continuous significant force drop in all elastics was seen at all time intervals (P <0.05, P <0.001). There was greater force loss in the heavy elastics compared with the medium elastics in vivo at all time intervals (P <0.001); the rates of force loss, however, were similar.

Conclusions: Fifty percent of force degradation occurred in the first 4 to 5 hours. Because of breakage and for oral hygiene purposes, orthodontic elastics should be changed daily; otherwise, elastics can be used for 48 hours. Force decay of the elastics was correlated to the lateral distance between the maxillary canine and the mandibular first molar in occlusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2016.08.023DOI Listing

Publication Analysis

Top Keywords

force degradation
8
degradation orthodontic
8
orthodontic latex
8
latex elastics
8
elastics
7
force
5
elastics in-vivo
4
in-vivo study
4
study introduction
4
introduction objectives
4

Similar Publications

This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM).

View Article and Find Full Text PDF

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Background: The objective of this study was to evaluate the effects of dietary fatty acids (FA) saturation and lysophospholipids supplementation on growth, meat quality, oxidative stability, FA profiles, and lipid metabolism of finishing beef bulls. Thirty-two Angus bulls (initial body weight: 623 ± 22.6 kg; 21 ± 0.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.

View Article and Find Full Text PDF

Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!