A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Parathyroid hormone stimulates adipose tissue browning: a pathway to muscle wasting. | LitMetric

Parathyroid hormone stimulates adipose tissue browning: a pathway to muscle wasting.

Curr Opin Clin Nutr Metab Care

aMichael E. Debakey Veterans Affair Medical Center bDivision of Nephrology, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.

Published: May 2017

Purpose Of Review: Studying organ-to-organ communications (i.e. crosstalk) uncovers mechanisms regulating metabolism in several tissues. What is missing is identification of mediators of different catabolic conditions contributing to losses of adipose and muscle tissues. Identifying mediators involved in organ-to-organ crosstalk could lead to innovative therapeutic strategies because several disorders such as chronic kidney disease (CKD), cancer cachexia, and other catabolic conditions share signals of worsening metabolism and increased risk of mortality.

Recent Findings: A recent breakthrough published in Cell Metabolism leads to the conclusion that parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) cause 'browning' of white adipose tissue plus energy production via activation of uncoupling protein-1. Browning was associated with muscle wasting in mouse models of cancer and CKD. The pathway to browning includes PTH/PTHrP activation of protein kinase A (PKA) and lost muscle mass via the ubiquitin proteasome proteolytic system (UPS).

Summary: The results suggest that crosstalk between muscle and fat contributes in a major way to tissue catabolism. The pathway initiated by PTH or PTHrP is novel and it suggests potential interrelationships that control metabolism in other catabolic conditions. Identifying how the parathyroid hormone-PKA-UPS axis relates to obesity, type 2 diabetes, and other insulin-resistant conditions remains unclear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822722PMC
http://dx.doi.org/10.1097/MCO.0000000000000357DOI Listing

Publication Analysis

Top Keywords

catabolic conditions
12
parathyroid hormone
8
adipose tissue
8
muscle wasting
8
muscle
5
parathyroid
4
hormone stimulates
4
stimulates adipose
4
tissue browning
4
browning pathway
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!