The first experimental evidence of anisotropic electron energization during magnetic reconnection that favors a direction perpendicular to the guide magnetic field in a toroidal, magnetically confined plasma is reported in this Letter. Magnetic reconnection plays an important role in particle heating, energization, and transport in space and laboratory plasmas. In toroidal devices like the Madison Symmetric Torus, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field. Fast x-ray measurements imply a non-Maxwellian, anisotropic energetic electron tail is formed at the time of reconnection. The tail is well described by a power-law energy dependence. The expected bremsstrahlung from an electron distribution with an anisotropic energetic tail (v_{⊥}>v_{∥}) spatially localized in the core region is consistent with x-ray emission measurements. A turbulent process related to tearing fluctuations is the most likely cause for the energetic electron tail formation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.075001DOI Listing

Publication Analysis

Top Keywords

magnetic reconnection
16
electron tail
12
anisotropic electron
8
magnetic field
8
anisotropic energetic
8
energetic electron
8
magnetic
6
tail
5
reconnection
5
anisotropic
4

Similar Publications

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

The ground-based solar telescope THEMIS performed several observations of Mercury's sodium exosphere in years 2011-2013, when the MESSENGER spacecraft was orbiting around the planet. Typical two-peak exospheric patterns were frequently identified. In previous studies, some specific cases of THEMIS Na two-peak observations were characterized and related to IMF conditions, during specific extreme cases, in the occasion of CME arrival.

View Article and Find Full Text PDF

Magnetoacoustic wave propagation in the solar corona and filament dynamics.

Sci Rep

December 2024

Mathematics, KU Leuven, Celestijnenlaan 200B, Leuven, Belgium.

The formation of a S-shaped filament was investigated to determine if and how magnetoacoustic waves in the solar corona can trigger filament excitation. The study investigated how magnetoacoustic waves interact with two magnetic null points in the solar corona. Since the solar corona has a complex magnetic field structure, it is expected that magnetic structures are predominantly responsible for the occurrence of coronal events.

View Article and Find Full Text PDF

Unlabelled: The lunar environment heliospheric X-ray imager (LEXI) and solar wind-magnetosphere-ionosphere link explorer (SMILE) will observe the magnetopause motion in soft X-rays to understand dayside reconnection modes as a function of solar wind conditions after their respective launches in the near future. To support their successful science mission, we investigate the relationship between the magnetopause position and the dayside reconnection rate by utilizing super dual auroral radar network (SuperDARN) observations and widely used empirical models of magnetopause position (Shue et al. in J Geophys Res 103:17691-17700.

View Article and Find Full Text PDF

Evidence of dual energy transfer driven by magnetic reconnection at subion scales.

Phys Rev E

November 2024

School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom and Space Weather Technology, Research and Education Center (SWx-TREC), University of Colorado, Boulder, Colorado 80309, USA.

Article Synopsis
  • The study examines how energy moves within plasma turbulence, focusing on its effects on heating in space and astrophysical environments.
  • It suggests that magnetic reconnection plays a key role in energy transfer, facilitating both downward transfer to smaller scales and upward transfer to larger scales.
  • Utilizing advanced simulations, the research provides solid evidence that magnetic reconnection initiates this complex dual energy transfer process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!