A biophysical view on von Willebrand factor activation.

J Cell Physiol

Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Published: February 2018

The process of hemostatic plug formation at sites of vascular injury crucially relies on the large multimeric plasma glycoprotein von Willebrand factor (VWF) and its ability to recruit platelets to the damaged vessel wall via interaction of its A1 domain with platelet GPIbα. Under normal blood flow conditions, VWF multimers exhibit a very low binding affinity for platelets. Only when subjected to increased hydrodynamic forces, which primarily occur in connection with vascular injury, VWF can efficiently bind to platelets. This force-regulation of VWF's hemostatic activity is not only highly intriguing from a biophysical perspective, but also of eminent physiological importance. On the one hand, it prevents undesired activity of VWF in intact vessels that could lead to thromboembolic complications and on the other hand, it enables efficient VWF-mediated platelet aggregation exactly where needed. Here, we review recent studies that mainly employed biophysical approaches in order to elucidate the molecular mechanisms underlying the complex mechano-regulation of the VWF-GPIbα interaction. Their results led to two main hypotheses: first, intramolecular shielding of the A1 domain is lifted upon force-induced elongation of VWF; second, force-induced conformational changes of A1 convert it from a low-affinity to a high-affinity state. We critically discuss these hypotheses and aim at bridging the gap between the large-scale behavior of VWF as a linear polymer in hydrodynamic flow and the detailed properties of the A1-GPIbα bond at the single-molecule level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.25887DOI Listing

Publication Analysis

Top Keywords

von willebrand
8
willebrand factor
8
vascular injury
8
vwf
6
biophysical view
4
view von
4
factor activation
4
activation process
4
process hemostatic
4
hemostatic plug
4

Similar Publications

Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine malignancy of the skin. The cell of origin of MCC is thus far unknown and proposed cells of origin include Merkel cells, pro-/pre- or pre-B cells, epithelial stem cells, and dermal stem cells. In this study, we aimed to shed further light on the possibility that a subset of MCC tumors arise from epithelial stem cells of the skin by examining the expression of hair follicle and epidermal stem cell markers in MCC and normal human skin.

View Article and Find Full Text PDF

A novel MPLKIP-variant in three Finnish patients with non-photosensitive trichothiodystrophy type 4.

Am J Med Genet A

June 2021

The Folkhaelsan Department of Medical Genetics, The Folkhaelsan Institute of Genetics and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Article Synopsis
  • - Trichothiodystrophy is a rare genetic disorder characterized by abnormal hair development and affects multiple body systems; this study focuses on two Finnish families with this condition.
  • - The researchers identified a new mutation in the MPLKIP gene through whole-exome sequencing, confirming the diagnosis of non-photosensitive trichothiodystrophy type 4 (TTD4) in three patients.
  • - This report enhances understanding of TTD4 by detailing the patients' unique physical traits and comparing their clinical features with previously documented cases.
View Article and Find Full Text PDF
Article Synopsis
  • A study looked at a treatment called L4-DRG stimulation for patients with a painful condition called CRPS.
  • The researchers tested how patients felt different sensations like pain and touch before and after 3 months of treatment.
  • They found that the treatment helped reduce pain for the patients, but it did not change how they felt warmth or touch.
View Article and Find Full Text PDF

Lichen planus pigmentosus-inversus in a Finnish man.

J Eur Acad Dermatol Venereol

February 2019

Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital, Helsinki, Finland.

View Article and Find Full Text PDF

Oral Platelet-Derived Growth Factor and Vascular Endothelial Growth Factor Inhibitor Sunitinib Prevents Chronic Allograft Injury in Experimental Kidney Transplantation Model.

Transplantation

January 2016

1 Transplantation Laboratory, University of Helsinki, Helsinki, Finland. 2 Department of surgery, Oulu University Central Hospital, Oulu, Finland. 3 Transplantation and Liver Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland. 4 Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.

Article Synopsis
  • Increased expression of PDGF and VEGF is linked to chronic rejection in kidney transplants, which can lead to allograft loss.
  • Sunitinib, a tyrosine kinase inhibitor, was tested in a rat model and shown to significantly reduce neointimal formation, smooth muscle cell activity, and chronic rejection signs while improving kidney function.
  • The findings suggest that targeting both PDGF and VEGF with sunitinib may offer a promising new approach for preventing chronic rejection in kidney transplant patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!