Probing the shape of a graphene nanobubble.

Phys Chem Chem Phys

Department of Information and Computing Science, Universiteit Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

Published: March 2017

Gas molecules trapped between graphene and various substrates in the form of bubbles are observed experimentally. The study of these bubbles is useful in determining the elastic and mechanical properties of graphene and adhesion energy between graphene and the substrate, and manipulating the electronic properties via strain engineering. In our numerical simulations, we use a simple description of the elastic potential and adhesion energy to show that for small gas bubbles (∼10 nm) the van der Waals pressure is in the order of 1 GPa. These bubbles show universal shape behavior irrespective of their size, as observed in recent experiments. With our results, the shape and volume of the trapped gas can be determined via the vibrational density of states (VDOS) using experimental techniques such as inelastic electron tunneling and inelastic neutron scattering. The elastic energy distribution in the graphene layer which traps the nanobubble is homogeneous apart from its edge, but the strain depends on the bubble size; thus variation in bubble size allows control of the electronic and optical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp08535kDOI Listing

Publication Analysis

Top Keywords

adhesion energy
8
bubble size
8
graphene
5
probing shape
4
shape graphene
4
graphene nanobubble
4
nanobubble gas
4
gas molecules
4
molecules trapped
4
trapped graphene
4

Similar Publications

Background: Medwakh smoking has radically expanded among youth in the Middle East and around the world. The rising popularity of medwakh/dokha usage is linked to the onset of several chronic illnesses including cardiovascular diseases and cancers. Medwakh smoking is reported to increase the risk of inflammation in the lower respiratory tract owing to oxidative burden.

View Article and Find Full Text PDF

Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion.

View Article and Find Full Text PDF

Patient: A 26-year-old man with localized tooth wear and demand for aesthetic rehabilitation of the anterior teeth presented to our department. The patient reported excessive consumption of energy drinks. Furthermore, multiple trauma and tooth fractures have occurred in the past.

View Article and Find Full Text PDF

A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.

View Article and Find Full Text PDF

Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.

Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!