Study Design: Clinical measurement and basic research.

Introduction: Manugraphy allows assessing dynamically all forces applied perpendicular to a cylinder surface by the whole contact area of the hand with a high spatial resolution.

Purpose Of The Study: To identify the physiological load distribution of the whole contact area of the hand during cylinder grip.

Methods: A sample of 152 healthy volunteers performed grip force tests with 3 cylinder sizes of the Manugraphy system (novel, Munich, Germany) on 3 different days. The whole contact area of the hand was sectioned into 7 anatomic areas, and the percent contribution of each area in relation to the total load applied was calculated. The load distribution of the dominant and nondominant hands and with different cylinder sizes was compared. Furthermore, the load distribution between the finger phalanges of each finger was analyzed.

Results: The results for the dominant and nondominant hands were in all 7 areas of the hand similar with the percent contribution differing within a range of 1%-4% (P > .138). Load distribution changed significantly with different cylinder sizes: all 7 areas differed between 1% and 7% with P < .001, most pronounced for the thumb. The load distribution of the phalanges showed that the contribution of the distal phalanges increased with ascending cylinder size, whereas the contribution of the proximal phalanges decreased. The interindividual variability of the load distribution pattern was noticeable.

Discussion: For the clinical practice, Manugraphy might be a useful supplement to traditional grip force measurement for identifying the individual characteristics of a patient's dysfunction and monitoring the progress of hand rehabilitation.

Conclusions: There is no universal or typical load distribution pattern of the hand but only an individual pattern. To evaluate a compromised hand, it is permissible to compare it with the healthy opposite hand as a reference. Several cylinder sizes should be used for load distribution testing. Using smaller handles in the daily life can help to compensate impairment of the thumb and fingertips.

Level Of Evidence: 2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jht.2016.10.009DOI Listing

Publication Analysis

Top Keywords

load distribution
36
cylinder sizes
16
contact area
12
area hand
12
load
10
hand
9
cylinder
8
hand cylinder
8
distribution
8
grip force
8

Similar Publications

This paper investigates the impact of treatment with chemical solutions of varying pH values on the micro-macroscopic damage in coal samples under load, employing a combination of Small Angle X-ray Scattering (SAXS) experiments and uniaxial compression tests. The experimental results show that soaking coal samples in NaOH, HCl, and distilled water for 7 days leads to reductions in uniaxial compressive strength by 39.19%, 47.

View Article and Find Full Text PDF

As global interest grows in renewable energy sources, the impact of combined Electric Vehicle (EV) and PhotoVoltaic (PV) penetration on the power grid stability requires renewed attention, to incorporate new technologies to maintain the power quality under operational constraints. Energy-saving techniques such as Conservation Voltage Reduction (CVR) allow the power utilities to transmit voltage at a lower operation limit, increasing the generation margin to absorb the peak load demands. Increased reverse PV penetration results in grid overvoltage while EV charging absorbs the reactive power causing grid instability.

View Article and Find Full Text PDF

A new population pharmacokinetic model for dosing optimization of zonisamide in patients with refractory epilepsy.

Eur J Pharm Sci

January 2025

Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal. Electronic address:

Zonisamide exhibits significant pharmacokinetic variability, demanding for the development of population pharmacokinetic (PopPK) models to identify key factors influencing drug disposition. This study aimed to develop and validate a PopPK to optimize zonisamide posology in patients with refractory epilepsy. A total of 114 plasma concentrations of zonisamide, obtained from 64 patients, were used for PopPK model development, employing the nonlinear mixed-effects modelling approach.

View Article and Find Full Text PDF

Integration of Asymmetric Multi-Path Hollow Structure and Multiple Heterogeneous Interfaces in FeO@C@NiO Nanoprisms Enabling Ultra-Low and Broadband Absorption.

Small

January 2025

Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.

A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.

View Article and Find Full Text PDF

Implant-supported prosthetic rehabilitation for patients with severely atrophic jaws is challenging due to complex anatomical considerations and the limitations of conventional augmentation techniques. This study explores the potential of subperiosteal (juxta-osseous) implants as an alternative solution, using finite element analysis (FEA) to evaluate mechanical performance. Realistic jaw models, developed from radiographic data, are utilized to simulate various implant configurations and load scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!