Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Targeted identification of potentially bioactive molecules from herbal medicines is often stymied by the insufficient chromatographic separation, ubiquitous matrix interference, and pervasive isomerism. An enhanced targeted identification strategy is presented and validated by the selective identification of flavonoid O-glycosides (FOGs) from Carthamus tinctorius. It consists of four steps: (i) enhanced separation and detection by offline two-dimensional liquid chromatography/LTQ-Orbitrap MS (offline 2D-LC/LTQ-Orbitrap MS) using collision-induced dissociation (CID) and high-energy C-trap dissociation (HCD); (ii) improved identification of the major aglycones by acid hydrolysis and LC-SPE-NMR; (iii) simplified spectral elucidation by high-resolution diagnostic product ions/neutral loss filtering; and (iv) more convincing structural identification by matching an in-house library. An offline 2D-LC system configuring an Acchrom XAmide column and a BEH Shield RP-18 UPLC column enabled much better separation of the easily co-eluting components. Combined use of CID and HCD could produce complementary fragmentation information. The intensity ratios of the aglycone ion species ([Y-H]/Y and [Y-2H]/Y) in the HCD-MS spectra were found diagnostic for discriminating the aglycone subtypes and characterizing the glycosylation patterns. Five aglycone structures (kaempferol, 6-hydroxykaempferol, 6-methoxykaempferol, carthamidin, and isocarthamidin) were identified based on the H-NMR data recorded by LC-SPE-NMR. Of the 107 characterized flavonoids, 80 FOGs were first reported from C. tinctorius. Unknown aglycones, pentose, and novel acyl substituents were discovered. A new compound thereof was isolated and fully identified, which could partially validate the MS-oriented identification. This integral strategy can improve the potency, efficiency, and accuracy in the detection of new compounds from medicinal herbs and other natural sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2017.02.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!