Interrupted/bipartite clavicle as a diagnostic clue in Kabuki syndrome.

Am J Med Genet A

Manchester Center for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, UK Manchester Academic Health Sciences Center, Manchester, UK.

Published: April 2017

Kabuki syndrome is a rare developmental disorder characterized by typical facial features, postnatal growth deficiency, mild to moderate intellectual disability, and minor skeletal anomalies. It is caused by mutations of the KMT2D and KDM6A genes while recently RAP1A and RAP1B mutations have been shown to rarely contribute to the pathogenesis. We report two patients' presentation of Kabuki syndrome caused by different KMT2D mutations, both including an interrupted/bipartite clavicle. The clinical diagnosis of Kabuki syndrome may be challenging, especially in younger patients and we suggest that the observation of a bipartite clavicle may be an additional diagnostic clue to prompt investigation for Kabuki syndrome. We also hypothesize that bipartite/pseudofractured clavicles or other skeletal defects may be under-recognized features of the clinical presentation of the chromatin remodeling disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.38131DOI Listing

Publication Analysis

Top Keywords

kabuki syndrome
20
interrupted/bipartite clavicle
8
diagnostic clue
8
kabuki
5
syndrome
5
clavicle diagnostic
4
clue kabuki
4
syndrome kabuki
4
syndrome rare
4
rare developmental
4

Similar Publications

The Kabuki syndrome (KS) is a rare congenital disease that has two different types, KS1 and KS2, with variant in epigenetic gene KMT2D and KDM6A, respectively. It is associated with multiple abnormalities such as (developmental delay, atypical facial features, cardiac anomalies, minor skeleton anomalies, genitourinary anomalies, and mild to moderate intellectual disability). This syndrome can lead to neonatal hypoglycemia that results from hyperinsulinemia and electrolyte abnormalities.

View Article and Find Full Text PDF

Objective: To explore the clinical and genetic characteristics of two children diagnosed with two rare genetic diseases simultaneously.

Methods: Two children with comorbidity of two genetic diseases due to dual genetic mutations diagnosed at the Third Affiliated Hospital of Zhengzhou University respectively in May 2022 and March 2023 were selected as the study subjects. Clinical and genetic data of the two children were retrospectively analyzed.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Introduction: Congenital Hyperinsulinism (CHI) has not been previously studied in Ukraine. We therefore aimed to elucidate the genetics, clinical phenotype, histological subtype, treatment and long-term outcomes of Ukrainian patients with CHI.

Methods: Forty-one patients with CHI were recruited to the Ukrainian national registry between the years 2014-2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!