The quinolinate phosphoribosyl transferase (QPT) is a key enzyme that converts quinolinic acid into nicotinic acid mononucleotide. The QPT gene plays an essential role in the pyridine nucleotide cycle as well as in the biosynthetic pathway of the alkaloid nicotine. However, a clear role for QPT is yet to be characterized to validate the actual function of this gene in planta. In this study, an RNA interference (RNAi) approach was used to reveal the functional role of QPT. Transformation and analysis of the hairy roots (HRs) of the Nicotiana leaf explants was used, followed by plant regeneration and analysis. High-performance liquid chromatography (HPLC) analysis of the HRs and of the regenerated plants both revealed altered alkaloid biosynthetic cycle, with a substantially reduced content of nicotine and anabasine. The transgenic plants exhibited a significantly altered phenotype and growth pattern. Also, silencing of QPT led to a decrease in chlorophyll content, maximum quantum efficiency of PSII, net CO assimilation and starch content. Results clearly demonstrated that QPT was not only involved in the biosynthetic pathway of the alkaloids but also affected plant growth and development. Our results provide information to be considered when trying to engineer the secondary metabolite quality and quantity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12559DOI Listing

Publication Analysis

Top Keywords

quinolinic acid
8
phosphoribosyl transferase
8
transferase qpt
8
qpt gene
8
biosynthetic pathway
8
role qpt
8
qpt
7
cloning functional
4
functional characterization
4
characterization quinolinic
4

Similar Publications

Objective: Cognitive impairment occurs throughout the entire course of and affects the work and life of patients with major depressive disorder (MDD). The gut microbiota, kynurenine pathway (KP) and inflammatory response may have important roles in the mechanism of cognitive impairment in MDD patients. Consequently, our goal was to investigate the association among the gut microbiota, inflammation, KP, and cognition in MDD.

View Article and Find Full Text PDF

Clinical symptoms of Parkinson's disease (PD) are classified into motor and non-motor symptoms. Mental disorders, especially depression, are one of the major non-motor manifestations of PD. However, the underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Neuroinflammation can be directly linked to the imbalance in the Kynurenine-tryptophan Pathway (KP) metabolism. Under inflammatory circumstances, the KP is activated, resulting in a rise in the KP metabolite L-kynurenine (KYN) in the peripheral and central nervous systems (CNS). Increased amounts of KYN in the brain may lead to neurotoxic KYN metabolites, mostly due to breakdown by Kynurenine-3-monooxygenase (KMO).

View Article and Find Full Text PDF

Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients. Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers.

View Article and Find Full Text PDF

Fostering healthy cognitive ageing in people living with HIV.

Lancet HIV

November 2024

MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.

Prevalence and incidence of HIV among people aged 50 years and older continue to rise worldwide, generating increasing awareness among care providers, scientists, and the HIV community about the importance of brain health in older adults with HIV. Many age-related factors that adversely affect brain health can occur earlier and more often among people with HIV, including epigenetic ageing, chronic medical conditions (eg, cardiovascular disease), and age-related syndromes (eg, frailty). Extensive dialogue between HIV community leaders, health-care providers, and scientists has led to the development of a multidimensional response strategy to protect and enhance brain health in people ageing with HIV that spans across public health, clinical spaces, and research spaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!