Skin biopsies are a valuable technique in the diagnosis of cutaneous inflammatory and neoplastic conditions. We were interested to test the minimal size or equivalent volume by dilution of proteolytically disassociated skin tissue required to allow the isolation and propagation of cutaneous cells, for freezing, storage and biochemical analysis. It was possible to propagate with 100% efficiency fibroblast and melanocytic cells from a 0.1 to 0.5 mm equivalent neonatal foreskin sample using a combination of DispaseII and CollagenaseIV. The smallest tissue dilution that allowed melanocytic cell culture was 0.01 mm, which equated to approximately 16 cells based on the average skin density of melanocytes. However, passaging of cells to create frozen stocks was achieved routinely only from 1 mm skin, equating to 1560 cells. Tissue-specific antigen expression of these cultures was tested by western blot of total protein extracts. There was no pigmentation antigen expression in fibroblast cultures; however, smooth muscle actin protein expression was high in fibroblast but absent from melanocytic cell strains. Melanocytic cells expressed pigmentation antigens and E-cadherin, but these were not detected in fibroblasts. Moreover, maturation of these melanocytic cells resulted in a decrease of Dopachrome Tautomerase antigen expression and induction of Tyrosinase protein consistent with the differentiation potential seen in cell cultures derived routinely from large sections of skin tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00403-017-1726-3 | DOI Listing |
J Dermatol Sci
January 2025
Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:
Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials.
View Article and Find Full Text PDFNeurol Res Int
January 2025
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of British Columbia, Vancouver, BC, Canada.
NF1 encodes the multifunctional tumour suppressor protein, neurofibromin, which is best known for its causative role in Neurofibromatosis type 1 and in regulating MAPK signaling. Neurofibromin, in a context-specific manner, is involved in various tumorigenic processes, including those in melanocytes. This study investigated whether NF1 loss can collaborate with oncogenic GNAQ to promote melanoma in the dermis or eyes, where the G alpha q pathway is almost always activated.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!