Validation of a Prediction Model for Vaginal Birth after Cesarean Delivery Reveals Unexpected Success in a Diverse American Population.

AJP Rep

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, California; Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California.

Published: January 2017

 To investigate the validity of a prediction model for success of vaginal birth after cesarean delivery (VBAC) in an ethnically diverse population.  We performed a retrospective cohort study of women admitted at a single academic institution for a trial of labor after cesarean from May 2007 to January 2015. Individual predicted success rates were calculated using the Maternal-Fetal Medicine Units Network prediction model. Participants were stratified into three probability-of-success groups: low (<35%), moderate (35-65%), and high (>65%). The actual versus predicted success rates were compared.  In total, 568 women met inclusion criteria. Successful VBAC occurred in 402 (71%), compared with a predicted success rate of 66% ( = 0.016). Actual VBAC success rates were higher than predicted by the model in the low (57 vs. 29%; < 0.001) and moderate (61 vs. 52%;  = 0.003) groups. In the high probability group, the observed and predicted VBAC rates were the same (79%).  When the predicted success rate was above 65%, the model was highly accurate. In contrast, for women with predicted success rates <35%, actual VBAC rates were nearly twofold higher in our population, suggesting that they should not be discouraged by a low prediction score.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330796PMC
http://dx.doi.org/10.1055/s-0037-1599129DOI Listing

Publication Analysis

Top Keywords

prediction model
12
predicted success
12
success rates
12
vaginal birth
8
birth cesarean
8
cesarean delivery
8
success
6
validation prediction
4
model
4
model vaginal
4

Similar Publications

Enteropathogens are major contributors to mortality and morbidity, particularly in settings with limited access to water, sanitation, and hygiene infrastructure. To assess transmission pathways associated with enteropathogen infection, we measured household environmental conditions and assayed 22 enteropathogens using TaqMan Array Cards in stool samples from 276 six-month-old children living in communities along a rural-urban gradient in Northern Ecuador. We utilized multivariable models, risk factor importance, and distance-based statistical methods to test factors associated with infection.

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Severity of metabolic derangement predicts survival after out-of-hospital cardiac arrest and the likelihood of benefiting from extracorporeal life support.

Emergencias

December 2024

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seúl, República de Corea. Department of Digital Health, SAIHST, Sungkyunkwan University, Seúl, República de Corea.

Objective: To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS).

Methods: A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men.

View Article and Find Full Text PDF

Self-diffusion coefficients, *, are routinely estimated from molecular dynamics simulations by fitting a linear model to the observed mean squared displacements (MSDs) of mobile species. MSDs derived from simulations exhibit statistical noise that causes uncertainty in the resulting estimate of *. An optimal scheme for estimating * minimizes this uncertainty, i.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is one of the typical complications of type 2 diabetes (T2D), with approximately 10 % of DKD patients experiencing a Rapid decline (RD) in kidney function. RD leads to an increased risk of poor outcomes such as the need for dialysis. Albuminuria is a known kidney damage biomarker for DKD, yet RD cases do not always show changes in albuminuria, and the exact mechanism of RD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!