The inner membrane (IM) of mitochondria displays an intricate, highly folded architecture and can be divided into two domains: the inner boundary membrane adjacent to the outer membrane and invaginations toward the matrix, called cristae. Both domains are connected by narrow, tubular membrane segments called cristae junctions (CJs). The formation and maintenance of CJs is of vital importance for the organization of the mitochondrial IM and for mitochondrial and cellular physiology. The multisubunit mitochondrial contact site and cristae organizing system (MICOS) was found to be a major factor in CJ formation. In this study, we show that the MICOS core component Mic60 actively bends membranes and, when inserted into prokaryotic membranes, induces the formation of cristae-like plasma membrane invaginations. The intermembrane space domain of Mic60 has a lipid-binding capacity and induces membrane curvature even in the absence of the transmembrane helix. Mic60 homologues from α-proteobacteria display the same membrane deforming activity and are able to partially overcome the deletion of Mic60 in eukaryotic cells. Our results show that membrane bending by Mic60 is an ancient mechanism, important for cristae formation, and had already evolved before α-proteobacteria developed into mitochondria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379949 | PMC |
http://dx.doi.org/10.1083/jcb.201609046 | DOI Listing |
Adv Sci (Weinh)
December 2024
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
Biochim Biophys Acta Mol Basis Dis
December 2024
Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair. Electronic address:
Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury.
View Article and Find Full Text PDFLife Sci Alliance
June 2024
Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
The mitochondrial contact site and cristae organizing system (MICOS) is important for crista junction formation and for maintaining inner mitochondrial membrane architecture. A key component of the MICOS complex is MIC60, which has been well studied in yeast and cell culture models. However, only one recent study has demonstrated the embryonic lethality of losing (the gene encoding MIC60) expression.
View Article and Find Full Text PDFCell Death Differ
October 2023
Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China.
Mitochondrial dysfunction and cell death play important roles in diabetic cardiomyopathy, but the underlying mechanisms remain unclear. Here, we report that mitochondrial dysfunction and cell apoptosis are prominent features of primary cardiomyocytes after exposure to high glucose/palmitate conditions. The protein level of MIC60, a core component of mitochondrial cristae, is decreased via ubiquitination and degradation under these conditions.
View Article and Find Full Text PDFCell Calcium
July 2023
Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria; BioTechMed, Graz, Austria. Electronic address:
The mitochondrial inner boundary membrane harbors a protein called MICU1, which is sensitive to Ca and binds to the MICOS components Mic60 and CHCHD2. Changes in the mitochondrial cristae junction structure and organization in MICU1 cells lead to increased cytochrome c release, membrane potential rearrangement, and changes in mitochondrial Ca uptake dynamics. These findings shed new light on the multifaceted role of MICU1, highlighting its involvement not only as an interaction partner and regulator of the MCU complex but also as a crucial determinant of mitochondrial ultrastructure and, thus, an essential player in processes initiating apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!