An artificial microalgal-bacterial consortium was used to remediate a mixture of analgesics (ketoprofen, paracetamol and aspirin) in a stirred-tank photobioreactor. A hydraulic retention time (HRT) of 3days supported poor treatment because of the formation of p-aminophenol (paracetamol toxic metabolite). Increasing the HRT to 4days enhanced the bioremediation efficiency. After applying an acclimatization regime, 95% removal of the analgesics mixture, p-aminophenol and COD reduction were achieved. However, shortening the HRT again to 3days neither improved the COD reduction nor ketoprofen removal. Applying continuous illumination achieved the best analgesics removal results. The harvested biomass contained 50% protein, which included almost all essential amino acids. The detected fatty acid profile suggested the harvested biomass to be a good biodiesel-producing candidate. The water-extractable fraction possessed the highest phenolic content and antioxidant capacity. These findings suggest the whole process to be an integrated eco-friendly and cost-efficient strategy for remediating pharmaceutical wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.02.062DOI Listing

Publication Analysis

Top Keywords

harvested biomass
12
mixture analgesics
8
stirred-tank photobioreactor
8
microalgal-bacterial consortium
8
hrt 3days
8
cod reduction
8
remediation mixture
4
analgesics
4
analgesics stirred-tank
4
photobioreactor microalgal-bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!