Autophagy is an extremely dynamic process that mediates the rapid degradation of intracellular components in response to different stress conditions. The autophagic response is executed by specific protein complexes, whose function is regulated by posttranslational modifications and interactions with positive and negative regulators. A comprehensive analysis of how autophagy complexes are temporally modified upon stress stimuli is therefore particularly relevant to understand how this pathway is regulated. Here, we describe a method to define the protein-protein interaction network of a central complex involved in autophagy induction, the Beclin 1 complex. This method is based on the quantitative comparison of protein complexes immunopurified at different time points using a stable isotope labeling by amino acids in cell culture approach. Understanding how the Beclin 1 complex dynamically changes in response to different stress stimuli may provide useful insights to disclose novel molecular mechanisms responsible for the dysregulation of autophagy in pathological conditions, such as cancer, neurodegeneration, and infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2016.09.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!