Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.

PLoS One

Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, University of Cordoba, Cordoba, Spain.

Published: September 2017

Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333851PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173028PLOS

Publication Analysis

Top Keywords

skeletal muscle
24
obese rats
16
muscle changes
12
oxidative capacity
12
muscle
9
mangiferin
8
adverse skeletal
8
atrophy slow-to-fast
8
zucker rats
8
gelatin pellets
8

Similar Publications

Some technical limitations to using the eccentric mode to measure peak eccentric strength of the hamstrings (PTH) were raised. PTH also has limited validity to predict performance or injury risk factor. Therefore, our aim was to compare PTH and other isokinetic variables tested in the eccentric and passive modes.

View Article and Find Full Text PDF

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Background: Diaphragm thickness is a potential marker of sarcopenia in addition to muscle mass and strength at extremities. We aimed to clarify the descriptive epidemiology and prognostic significance of diaphragm thickness in the general population.

Methods: The study participants were 3324 community residents (mean age: 61.

View Article and Find Full Text PDF

Background: Prospective trial evidence is lacking regarding the application of enhanced recovery after surgery (ERAS) in transvaginal pelvic floor reconstruction surgery among older patients. Our study aimed to investigate whether implementing the ERAS protocol could enhance post-operative recovery in this patient population.

Methods: Older patients undergoing elective transvaginal pelvic floor reconstruction surgery were randomly assigned to either the ERAS group or the conventional group.

View Article and Find Full Text PDF

Photobiomodulation and aquatic training reduce TNF-α expression and enhance muscle fiber area in Wistar rats with compensatory hypertrophy.

Lasers Med Sci

January 2025

Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), 235/249 Vergueiro Street, Sao Paulo, SP, 01525000, Brazil.

This study aims to assess the effects of aquatic training (AT) and its combination with photobiomodulation (PBM) on cytokine synthesis and plantar muscle morphology during compensatory hypertrophy (H) in Wistar rats. H was induced by bilateral ablation of synergistic muscles, and PBM using a laser (780 nm). AT involved 60 min sessions, 5 times/week, for 7 and 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!