Introduction: In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients.
Methods: Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions.
Results: Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients.
Conclusions: Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13546805.2017.1287693 | DOI Listing |
Sci Adv
January 2025
School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.
Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
General Microbiology, Technische Universität Dresden, Dresden, Germany.
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.
View Article and Find Full Text PDFToxics
January 2025
Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Fe) in each fraction were measured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!