Direct analysis of synthetic fibers under ambient conditions is highly desired to identify the polymer, the finishes applied and irregularities that may compromise its performance and value. In this paper, laser ablation electrospray ionization ion mobility time-of-flight mass spectrometry (LAESI-IMS-TOF-MS) was used for the analysis of synthetic polymers and fibers. The key to this analysis was the absorption of laser light by aliphatic and aromatic nitrogen functionalities in the polymers. Analysis of polyamide (PA) 6, 46, 66, and 12 pellets and PA 6, 66, polyaramid and M5 fibers yielded characteristic fragment ions without any sample pretreatment, enabling their unambiguous identification. Synthetic fibers are, in addition, commonly covered with a surface layer for improved adhesion and processing. The same setup, but operated in a transient infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mode, allowed the detailed characterization of the fiber finish layer and the underlying polymer. Differences in finish layer distribution may cause variations in local properties of synthetic fibers. Here we also show the feasibility of mass spectrometry imaging (MSI) of the distribution of a finish layer on the synthetic fiber and the successful detection of local surface defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388367PMC
http://dx.doi.org/10.1021/acs.analchem.6b04641DOI Listing

Publication Analysis

Top Keywords

synthetic fibers
16
electrospray ionization
12
mass spectrometry
12
finish layer
12
laser ablation
8
ablation electrospray
8
analysis synthetic
8
synthetic
6
fibers
6
ambient characterization
4

Similar Publications

The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties.

View Article and Find Full Text PDF

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

Carbon Dioxide Upgrading to Biodegradable Plastics through Photo/Electro-Synthetic Biohybrid Systems.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

The escalating emissions of anthropogenic carbon dioxide (CO) and the pervasive issue of nondegradable plastic pollution underscore dual urgent challenges in pursuit of a sustainable society. Achieving such sustainability in the plastic industry, while effectively addressing these environmental concerns, necessitates the development and implementation of innovative strategies for the synthesis of biodegradable polymers utilizing CO as feedstocks. The technologies not only facilitate the mitigation of elevated atmospheric CO concentrations but also introduce a renewable carbon resource for polymer manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!