A series of uranyl complexes with hexaphyrin ligands are investigated at the density functional level of theory and analysed using a variety of density-based techniques. A relationship is identified between the size of the ligand and the stability of the complex, controlled by the presence of meso-carbon centres in the porphyrin ring. The complex with the smallest ligand, cyclo[6]pyrrole, is found to have enhanced covalent character in equatorial U-N bonds as defined by the quantum theory of atoms in molecules (QTAIM), as well as enhanced stability, compared to the larger complexes. QTAIM data are supported by electron density difference distributions, integrated electronic properties and analysis of the reduced density gradient (RDG), which all show unambiguous evidence of electron sharing in all U-N bonds. In all complexes, a weakening of the covalent axial U-O interaction in comparison to free uranyl is found, with evidence for a separation of electronic charge resulting in a more ionic interaction. A relationship between covalent character in the U-N bonds and the magnitude of uranyl charge redistribution is identified, where the greater the covalent character of the U-N interaction, the more ionic the U-O interaction appears. The complex with the largest ligand, hexaphyrin(1.1.1.1.1.1), is found to have additional interactions with the uranyl oxygen centres, perturbing the U-O interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp08783c | DOI Listing |
J Am Chem Soc
January 2025
Department of Physics, Alba Nova Research Center, Stockholm University, Stockholm SE-106 91 Sweden.
Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, Wrocław, 50-422, Poland.
X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
The insulating transition metal nitride CaCrN consists of sheets of triangular [CrN] units with symmetry that are connected via quasi-1D zigzag chains. Due to strong covalency between Cr and N, Cr ions are unusually low-spin, and = 1/2. Magnetic susceptibility measurements reveal dominant quasi-1D spin correlations with very large nearest-neighbor antiferromagnetic exchange = 340 K and yet no sign of magnetic order down to = 0.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Handique Girls' College, Guwahati , 781001, Assam, India.
Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!