A crack and its propagation is a challenging multiscale materials phenomenon of broad interest, from nanoscience to exogeology. Particularly in fracture mechanics, periodicities are of high scientific interest. However, a full understanding of this phenomenon across various physical scales is lacking. Here, we demonstrate periodic interlayer-mediated thin film crack propagation and discuss the governing conditions resulting in their periodicity as being universal. We show strong confinement of thin film cracks and arbitrary steering of their propagation by inserting a predefined thin interlayer, composed of either a polymer, metal, or even atomically thin graphene, between the substrate and the brittle thin film. The thin interlayer-mediated controllability arises from local modification of the effective mechanical properties of the crack medium. Numerical calculations incorporating basic fracture mechanics principles well model our experimental results. We believe that previous studies of periodic cracks in SiN films, self-de-bonding sol-gel films, and even drying colloidal films, along with this study, share the same physical origins but with differing physical boundary conditions. This finding provides a simple analogy for various periodic crack systems that exist in nature, not only for thin film cracks but also for cracks ranging in scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333109PMC
http://dx.doi.org/10.1038/srep43400DOI Listing

Publication Analysis

Top Keywords

thin film
16
crack propagation
8
fracture mechanics
8
film cracks
8
thin
7
cracks
5
universality periodicity
4
periodicity revealed
4
revealed interlayer-mediated
4
interlayer-mediated cracks
4

Similar Publications

Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.

View Article and Find Full Text PDF

Highly Strained Polymeric Monolayer Stacked for Wafer-Scale and Transferable Nanodielectrics.

ACS Nano

December 2024

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.

View Article and Find Full Text PDF

High Performance of Cs2AgBiBr6 Perovskite-based Photodetectors by Adding DEAC.

Chemistry

December 2024

East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.

Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!