Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-017-4918-3 | DOI Listing |
Sci Rep
January 2025
Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Over 50% of individuals with lower limb loss report a fear of falling and avoiding daily activities partly due to a lack of plantar sensation. Providing direct somatosensory feedback via neural stimulation holds promise for addressing this issue. In this study, three individuals with lower limb loss received a sensory neuroprosthesis (SNP) that provided plantar somatosensory feedback corresponding to prosthesis-floor interactions perceived as arising from the missing foot generated by electrically activating the peripheral nerves in the residuum.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
Gait abnormalities affect an individual's ability to navigate the world independently and occur in 10% of older adults. Examining age-related gait symmetry in nonlaboratory environments is necessary for understanding mobility limitations in older adults. This study examined gait symmetry differences between older and younger adults using in-shoe force sensors.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China. Electronic address:
This study investigated the influence of tissue electron density on proton beam dose distribution using TOPAS Monte Carlo simulation. Heterogeneous tissue models composed of 14 materials were constructed to simulate the dose deposition process of a 169.23 MeV proton beam.
View Article and Find Full Text PDFAnn Phys Rehabil Med
January 2025
Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.
Background: Inspiratory and expiratory muscle training (RMT) has been shown to have beneficial effects in individuals with long-term post-COVID-19 symptoms.
Objective: To assess the effects of adding RMT to an aerobic exercise (AE) training program for health-related quality of life (HRQoL) and exercise tolerance in individuals with long-term post-COVID-19 symptoms, and to evaluate the effects on physical and lung function, and psychological status.
Methods: 64 individuals with long-term post-COVID-19 symptoms of fatigue and dyspnoea were randomly assigned to AE+RMT or AE+RMT groups for an 8-wk intervention (AE: 50min/day, 2 times/wk; RMT: 40min/day, 3 times/wk).
Hum Mov Sci
January 2025
Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:
This study aimed to investigate the effect of hand muscle fatigue on finger control and force efficiency during piano performance, which is crucial for skilled piano playing among professional pianists engaged in prolonged periods of high-intensity practice or concert preparation. Thirty-one professional pianists were recruited as participants. This study was divided into three sequential experimental parts: pre-fatigue test, fatigue protocol, and post-fatigue test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!