The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of "nanomaterial" for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition. Graphical abstractWe evaluate the extent of agreement between classification by electron microscopy (EM) and classification by Volume-Specific Surface Area (VSSA) on a large set of diverse particulate substances. These represent the challenges anticipated for identification of nanomaterials by the European Commission recommendation for a definition of nanomaterials for regulatory purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306339 | PMC |
http://dx.doi.org/10.1007/s11051-017-3741-x | DOI Listing |
Plants (Basel)
December 2024
Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
Soil salinization is a major factor threatening global food security. Soil improvement strategies are therefore of great importance in mitigating the adverse effect of salt stress. Our study aimed to evaluate the effect of biochar (BC) and nitric acid-modified biochar (HBC) (1%, 2%, and 3%; m/m) on the properties of salinized soils and the morphological and physiological characteristics of pakchoi.
View Article and Find Full Text PDFData Brief
December 2024
Centre for Gelatinous Zooplankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark.
The diversity and distribution of gelatinous macrozooplankton is described by presenting qualitative and quantitative data of the jellyfish and comb jelly community encountered in the North Sea and Skagerrak/Kattegat during January/February 2022. Data were generated as part of the North Sea Midwater Ring Net (MIK) survey [1], an ichthyoplankton survey conducted at night-time during the quarter 1 (Q1) International Bottom Trawl Survey (IBTS), aboard the Danish R/V DANA (DTU Aqua) and the Swedish R/V Svea (SLU). A total of 100 stations were investigated using a 13 m long Midwater Ring Net (MIK net) with an opening diameter of 2 m and a mesh size of 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2024
College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
To realize the resource utilization of solid waste (coal slime) and further the dual carbon goals, utilizing coal slime and coal ash as adsorbates for CO capture is crucial. This study employed low-temperature N adsorption, low-pressure CO adsorption, X-ray diffraction, X-ray fluorescence, and isothermal adsorption tests to assess coal slime and coal ash's pore/mineral composition characteristics. Subsequently, the influence on CO adsorption was analyzed to reveal the CO adsorption mechanisms of pores and clay minerals, and CO molecule adsorption behavior.
View Article and Find Full Text PDFACS Omega
July 2024
Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of the Central Asian Orogenic Belt, Xinjiang University, Urumqi, Xinjiang 830047, China.
Important breakthroughs have recently been achieved in deep coalbed methane (CBM) exploration and development in regions such as the eastern margin of the Ordos Basin, China. Investigating the development characteristics of various-scale pores in deep coalbeds is of great significance for resource assessment and selection of favorable zones for CBM exploration. Herein, six deep coal samples were selected from the Shanxi and Taiyuan Formations in the Daning-Jixian block on the eastern margin of the Ordos Basin.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China. Electronic address:
Flexible hybrid hydrogels (GO/AC/CNFn) with a 3D porous network structure and superhydrophilic property are synthesized by cross-linking and self-assembling graphene oxide (GO) and activated carbon (AC) with cellulose nanofiber (CNF) during microwave hydrothermal process. In this ternary composite hydrogel, CNF molecular chains bridge GO sheets to build the 3D skeleton and anchor AC particles within GO nanosheets, forming ordered architecture of GO/AC/CNFn hydrogel that simultaneously possesses high flexibility and excellent mechanical integrity. When using this hydrogel as additive-free electrode, the presence of AC provides developed porous structure and density to promote high volumetric capacitance, while the heteroatom nitrogen groups tune the surface property of the composite with increased electrical conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!