Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model.

Proteomes

Fundamental and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Published: July 2014

To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302749PMC
http://dx.doi.org/10.3390/proteomes2030382DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
12
quantitative proteomic
8
low-dose ionizing
8
human skin
8
protein abundance
8
subcellular localization
8
proteolytic processing
8
proteomic profiling
4
profiling low-dose
4
radiation
4

Similar Publications

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).

View Article and Find Full Text PDF

: Hysterosalpingography (HSG) is pivotal in delineating tubal pathology, but is associated with pain and exposure to ionizing radiation. This study investigated which reproductive factors predict HSG-identified tubal pathology. : From May 2016 to August 2023, 3322 infertile females with HSG (mean age 33.

View Article and Find Full Text PDF

: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.

View Article and Find Full Text PDF

Metabolic-Modulating Effects of Radiation: Undetectable Yet Deadly-A Review on Radiotherapy.

Cancers (Basel)

December 2024

Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 48033 Ferrara, Italy.

From a cancer-centric perspective, radiotherapy has been primarily viewed as a localised treatment modality, targeting cancer tissues with ionising radiation to induce DNA damage and cell death [...

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!