Certain pyridazine containing compounds 2a-f, 3a, b, 4a, b, 5a, b, 6a and b were synthesized and characterized by spectroscopic means and elemental analysis. All the synthesized compounds were screened for their cytotoxic activity in vitro on colon cancer cell line (HCT-116) and breast cancer cell line (MCF-7). In addition, the antitumor activity of the synthesized compounds was tested in vivo against Ehrlich's ascites carcinoma (EAC) solid tumor grown in mice. The in vitro vascular endothelial growth factor receptor (VEGFR) enzyme inhibition assay was carried out for the most active compounds at a single dose of 10 µM. The obtained results revealed that compound 5b, which showed potent cytotoxic activity against HCT-116 also, exhibited the highest inhibition in the VEGFR kinase assay (92.2%).

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c16-00532DOI Listing

Publication Analysis

Top Keywords

pyridazine compounds
8
synthesized compounds
8
cytotoxic activity
8
cancer cell
8
compounds
5
design synthesis
4
synthesis pyridazine
4
compounds promising
4
promising anticancer
4
activity
4

Similar Publications

Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.

View Article and Find Full Text PDF

NLRP3 inflammasome inhibitor is a highly attractive drug target for the treatment of various inflammatory diseases. Here, we report the discovery of pyridazine derivatives as a new class of scaffold for NLRP3 inflammasome inhibitors. We optimized HTS hit 2a to improve both in vitro IL-1β inhibitory activity and the mean photo effect (MPE) value in the in vitro 3T3 neutral red uptake (NRU) phototoxicity test.

View Article and Find Full Text PDF

Over the past two decades, small molecules bearing [5,6]-bicyclic nitrogen-containing cores have emerged as one of the most extensively studied structures for the development of selective c-MET kinase inhibitors. Structure-activity relationship (SAR) studies have demonstrated that modifying these cores can significantly impact the biological properties of c-MET inhibitors, including safety/toxicity, potency, and metabolic stability. For example, although c-MET kinase inhibitors containing the [1,2,4]triazolo[4,3-b][1,2,4]triazine scaffold (core P) exhibit high inhibitory potency, they often face challenges due to metabolic stability defects.

View Article and Find Full Text PDF

Pyridazine and pyridazinone compounds in crops protection: a review.

Mol Divers

December 2024

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.

Pyridazine and pyridazinone belong to the same group of six-membered heterocyclic compounds, and both structurally feature two adjacent nitrogen atoms. Pyridazine and pyridazinone derivatives are frequently used as core structures in the development of new green agrochemicals due to their high activity and environmental friendliness, attracting significant attention from researchers in recent years. Over the past 20 years, significant developments have occurred in the field of pyridazine and pyridazinone derivatives, which exhibit insecticidal, fungicidal, herbicidal, antiviral, and plant growth regulating activities.

View Article and Find Full Text PDF

1,2,3-triazole-based ring connected with pyridazine, triazine, methyl pyrazole, diphenyl pyrazole, and pthalimide moieties through propylene linker have been synthesized for antidiabetic evaluation via click chemistry. The antidiabetic evaluations have been done by molecular docking studies and in- vitro tests and against the DPP-4 enzyme. The molecular docking studies have revealed that compounds 22, 23, 29, and 30 showed hydrogen bond with the DPP-4 enzyme while in vitro tests has revealed the compound 30 has (IC50 values 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!