Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis.

Stroke

From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.).

Published: April 2017

Background And Purpose: Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.

Methods: We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.

Results: Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.

Conclusions: Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613764PMC
http://dx.doi.org/10.1161/STROKEAHA.116.015609DOI Listing

Publication Analysis

Top Keywords

cell death
20
intracerebral hemorrhage
16
ferroptosis necroptosis
12
secondary injury
12
death mechanisms
12
vitro vivo
8
shares features
8
death
8
hemoglobin hemin
8
chemical inhibitors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!