Although the pedigree-based inbreeding coefficient predicts the proportion of an individual's genome that is identical-by-descent (IBD), heterozygosity at genetic markers captures Mendelian sampling variation and thereby provides an estimate of IBD. Realized IBD should hence explain more variation in fitness than their pedigree-based expectations, but how many markers are required to achieve this in practice remains poorly understood. We use extensive pedigree and life-history data from an island population of song sparrows () to show that the number of genetic markers and pedigree depth affected the explanatory power of heterozygosity and , respectively, but that heterozygosity measured at 160 microsatellites did not explain more variation in fitness than This is in contrast with other studies that found heterozygosity based on far fewer markers to explain more variation in fitness than Thus, the relative performance of marker- and pedigree-based estimates of IBD depends on the quality of the pedigree, the number, variability and location of the markers employed, and the species-specific recombination landscape, and expectations based on detailed and deep pedigrees remain valuable until we can routinely afford genotyping hundreds of phenotyped wild individuals of genetic non-model species for thousands of genetic markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360928PMC
http://dx.doi.org/10.1098/rspb.2016.2763DOI Listing

Publication Analysis

Top Keywords

variation fitness
16
genetic markers
12
explain variation
12
pedigree-based inbreeding
8
inbreeding coefficient
8
160 microsatellites
8
markers
6
variation
5
heterozygosity
5
pedigree-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!