Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596848PMC
http://dx.doi.org/10.1523/JNEUROSCI.3889-16.2017DOI Listing

Publication Analysis

Top Keywords

synaptic vesicles
4
vesicles "know"
4
"know" pool
4
pool belong
4
belong to?
4
synaptic
1
"know"
1
pool
1
belong
1
to?
1

Similar Publications

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.

View Article and Find Full Text PDF

Tauopathies, a group of neurodegenerative disorders, are characterized by the abnormal aggregation of tau proteins into neurofibrillary tangles (NFTs), driving synaptic dysfunction, neuronal loss, and disease progression through tau aggregate propagation. Graphene quantum dots (GQDs) functionalized with - cysteine ( -GQDs) have shown promise in inhibiting tau aggregation and transmission π-π stacking and electrostatic interactions with tau proteins. However, the non-specific binding of GQDs to various proteins in the physiological environment, such as serum albumin, limits their clinical translation.

View Article and Find Full Text PDF

The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V) and proton transport (V) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions.

View Article and Find Full Text PDF

Biological Basis of Cell Trafficking: A General Overview.

J Inherit Metab Dis

January 2025

Department of Neurology and MetabERN; Esplugues de Llobregat, Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.

Cell trafficking is a tightly regulated biological process for the exchange of signals and metabolites between cell compartments, including four main processes: membrane trafficking (transport of membrane-bound vesicles), autophagy, transport along the cytoskeleton, and membrane contact sites. These processes are cross-sectional to cellular functions, ranging from the transportation of membrane proteins, membranes, and organelles to the elimination of damaged proteins and organelles. In consequence, cell trafficking is crucial for cell survival and homeostasis, serving as a cornerstone for cellular communication and facilitating interactions both with the surrounding environment and between different organelles.

View Article and Find Full Text PDF

At presynaptic active zones (AZs), scaffold proteins are critical for coordinating synaptic vesicle release and forming essential nanoarchitectures. However, regulatory principles steering AZ scaffold assembly, function, and plasticity remain insufficiently understood. We here identify an additional Drosophila AZ protein, "Blobby", essential for proper AZ nano-organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!