A low-jitter self-break repetitive multi-stage gas switch.

Rev Sci Instrum

Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China.

Published: February 2017

A megavolt low-jitter self-break repetitive gas switch is developed by the use of the corona stabilization and the multi-stage structure in this paper. This switch is multi-stage, consisting of one corona stabilization stage and subsequent rimfire stages. The corona stabilization stage breakdowns first, then the subsequent rimfire stages are self-fired by the over-voltage from the closure of the corona stabilization stage. SF is used in the switch. It has been proven by experiment that the multi-stage gas switch, which consists of one 1.3-cm gap corona stabilization stage and five 0.5-cm gap rimfire stages, can operate at repetition rate frequency (PRF) of 50 Hz with a voltage jitter less than 2% in 2000 discharges. The breakdown voltage of this multi-stage switch reaches 770 kV and the single discharge current is 8.50 kA at 4 bars.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4973420DOI Listing

Publication Analysis

Top Keywords

corona stabilization
20
stabilization stage
16
gas switch
12
rimfire stages
12
low-jitter self-break
8
self-break repetitive
8
multi-stage gas
8
subsequent rimfire
8
switch
6
multi-stage
5

Similar Publications

Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.

View Article and Find Full Text PDF

Simulated Gastrointestinal Fluids Impact the Stability of Polymer-Functionalized Selenium Nanoparticles: Physicochemical Aspects.

Int J Nanomedicine

December 2024

Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria.

Background: Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency.

View Article and Find Full Text PDF

The Smokeless Paradox: Nontobacco Nicotine Use and Complications in Anterior Cervical Discectomy and Fusion.

J Am Acad Orthop Surg

December 2024

From the UT Medical Branch Galveston, Galveston, TX (Lawand), and Baylor College of Medicine (Ghali, Hauck, Corona, Gonzalez, and Deveza), Houston, TX.

Introduction: Cervical fusion surgeries are commonly performed to stabilize the spine and relieve pain from various conditions. Recent increases in nontobacco nicotine product use, such as electronic cigarettes, present new challenges because of their unknown effects on spinal fusion outcomes. Our study aims to explore the effect of nontobacco nicotine dependence (NTND) on the success of cervical spinal fusions.

View Article and Find Full Text PDF

Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site.

View Article and Find Full Text PDF

DNA transposons have emerged as promising tools in both gene therapy and functional genomics. In particular, the Sleeping Beauty (SB) DNA transposon has advanced into clinical trials due to its ability to stably integrate DNA sequences of choice into eukaryotic genomes. The efficiency of the DNA transposon system depends on the interaction between the transposon DNA and the transposase enzyme that facilitates gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!