Protective effect of Azolla microphylla on biochemical, histopathological and molecular changes induced by isoproterenol in rats.

Biomed Pharmacother

Department of Biochemistry, Karpagam University, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India. Electronic address:

Published: May 2017

Azolla microphylla is an important fast-growing aquatic plant trusted for its agronomic, nutritious and therapeutic uses. The present work is undertaken to investigate the protective effect of the ethanolic extract of Azolla microphylla (EAM) against the Isoproterenol (ISO) induced cardiotoxicity in rats. Rats were pre-treated with EAM (250 and 500mg/kg b.w.) for 28 days along with ISO (85mg/kg; s.c.) on the 29th and 30th days. ISO-induced rats displayed significant diminution in cardiac antioxidant enzymes activities, increased lipid peroxidation and alteration in cardiac marker enzymes. The same group also displayed an increase in levels of serum lipid profiles and pro-inflammatory cytokines (IL-6 and IL-8) accompanied with a significant reduction in the anti-inflammatory cytokine levels (IL-10). Moreover, the histopathological investigations in the heart tissue of ISO-induced group exhibited myocardial necrosis and inflammation, which correlated with the increased immunoreactivity for Bax/iNOS, whereas an absence of reactivity for Bcl-2 proteins. However, in EAM pre-treated rats, the activities of antioxidant enzymes, cardiac marker enzymes, membrane-bound ATPases together with the levels of lipid profile, non-enzymatic antioxidants, pro and anti-inflammatory cytokines were maintained at normalcy that was further supported by improving histopathological changes and myocardial architecture. The IHC results of EAM pre-treated rats indicate up-regulated and down-regulated expressions of Bcl-2 and Bax/iNOS proteins, respectively. Thus, the present study reveals that A. microphylla alleviates myocardial damage in ISO-induced cardiac injury and demonstrates cardioprotective potential which could be attributed to its potent antioxidant and free radical scavenging activity. A possible mechanism for the protective effect is the elevated expression of endogenous antioxidant defense enzymes, anti-inflammatory cytokines, degraded lipid peroxidation products and improved energy metabolism of cardiac mitochondria, thus attenuating necrosis of the myocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2017.01.177DOI Listing

Publication Analysis

Top Keywords

azolla microphylla
12
antioxidant enzymes
8
lipid peroxidation
8
cardiac marker
8
marker enzymes
8
eam pre-treated
8
pre-treated rats
8
anti-inflammatory cytokines
8
rats
6
cardiac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!