In India syzygium cumini (Myrtaceae) is commonly used traditional medicine to treat diabetes. The present study was undertaken to assess an investigation of antihyperglycemic and antidyslipidemic properties of aqueous extract of Syzigium Cumini (SC) in diabetic rats fed a high cholesterol diet. The aqueous extract of SC was screened for antihyperglycemic and antidyslipidemic activity by streptozotocin induced diabetes in rats. Animals were treated with 100, 200 and 400mg/kg body weight of aqueous extract of SC. Metformin were used as reference antihyperglycemic drugs for comparison. Administration of aqueous extract of SC or metformin for 21days resulted in a significant (P<0.05) reduction in serum glucose, insulin and Homeostasis model assessment of insulin resistance (HOMA-IR) compared with diabetic controls. Treatment with 100mg/kg/day aqueous extract of SC did not result in a significant reduction in serum insulin levels, but 200mg/kg/day and 400mg/kg/day, aqueous extract of SC and metformin showed significant reductions 17.89%, 19.60% and 24.40%, respectively. Furthermore, administration of 100, 200 and 400mg/kg/day, aqueous extract of SC and metformin resulted in significant decrease in insulin resistance of 19.20%, 41.59%, 51.55% and 68.68%, respectively. In high fat diet- streptozotocin (HFD - STZ) treated rats β-cells function (HOMA-B) were markedly reduced (5.8-fold), however observed a significant (P<0.01) improvement of β-cell function with aqueous extract of SC (400mg/kg/day) and metformin. The aqueous extract of SC seeds exhibits significant insulin-sensitizing, antidyslipidemic, antioxidant, anti-inflammatory and β-cell salvaging activity in HFD-STZ-induced type 2 diabetic rats via overexpression of PPARγ and PPARα activity, affirming its potential to be used in the prevention and treatment of type 2 diabetes mellitus (T2DM). Further isolation and characterization of active components in SC seed extract are needed to explore the other possible mechanisms and pathways that are involved in its anti-diabetic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2017.02.048 | DOI Listing |
Polymers (Basel)
December 2024
Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.
Plant extracts demonstrate significant potential as a rich source of active pharmaceutical ingredients, exhibiting diverse biological activities and minimal toxicity. However, the low aqueous solubility of extracts and their gastrointestinal permeability, as well as their poor oral bioavailability, limit clinical advancements due to drug delivery problems. An amorphous solid dispersion (ASD) delivers drugs by changing an active pharmaceutical ingredient (API) into an amorphous state to increase the solubility and availability of the API to the body.
View Article and Find Full Text PDFNutrients
December 2024
Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China.
Background: Bunge (CM) shows promising potential for managing rheumatoid arthritis (RA) and digestive disorders, attributed to its rich content of bioactive compounds such as polyphenols and flavonoids. Despite its common use in herbal tea, the specific mechanisms underlying CM's anti-inflammatory and joint-protective effects remain unclear, limiting its development as a functional food. This study investigated the effects of aqueous CM extract on RA in collagen-induced arthritis (CIA) rats and explored the underlying mechanisms.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratoire de Recherche-Développement de Phytomédicaments et Médicaments (LR-D/PM), Institut de Recherche en Sciences de la Santé (IRSS), Centre National de la Recherche Scientifique et Technologique (CNRST), Ouagadougou 03 BP 7047, Burkina Faso.
Del. (Zygophyllaceae) is widely used in traditional medicine, both human and veterinary, throughout Africa for its many properties, including antiparasitic properties. This experimental study aims to optimize the extraction conditions of the seeds of Del.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco.
L., a member of the Lamiaceae family, is widely used in traditional medicine for its therapeutic properties. This study aims to analyze the chemical composition of its essential oil and extracts, evaluate their antimicrobial and antioxidant activities, and investigate the interactions of their bioactive compounds with biological targets using in silico methods to better understand their mechanisms of action.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil.
Background: Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!