Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arsenic, a natural element of ecological relevance, is one of the most toxic elements present in various regions of the world. It can be found in natural water sources throughout Argentina in concentrations between 0.01 and 15mgL. The Argentinean autochthonous toad Rhinella arenarum was selected to study the molecular mechanisms involved in the effects and response to the chronic As exposure along its embryonic and larval development. We evaluated the effects on MAPK signal transduction pathway and transcription factors c-FOS and c-JUN, and the regulation of the expression at protein levels of different antioxidant enzymes. Our results indicated that As is modulating the MAPK pathway, increasing MEK and ERK levels both in the nuclear and post-nuclear fraction along the embryonic development and mainly at the beginning of the larval stage. Through this pathway, As can upregulate transcription factors like c-FOS and c-JUN, impacting the antioxidant response of the exposed embryos and larvae through antioxidant enzymes and recycling of GSH. Arsenic triggered specifically the synthesis of antioxidant enzymes in exposed R. arenarum embryo and larvae. In particular, the expression levels of SOD, CAT and GST enzymes analyzed by Western blot showed a similar behavior to their enzymatic activities in our previous work. This fact suggests that not only the synthesis of these antioxidant enzymes but also their rapid degradation after inactivation would be regulated in response to ROS levels. Antioxidant enzymes may show dual responses of induction and inactivation followed by degradation depending on the levels of oxidative stress and impact on ROS targets when the exposure is sustained in time and intensity. We also performed a probability of exceedence analysis including our previous results to visualize a progression of the response in time and also established the best early-responding biomarkers at the lowest As concentrations. As a conclusion, the molecular biomarkers such as the MAPKs MEK and ERK and transcription factors c-FOS and c-JUN are early induced in the response of developing toad embryos exposed to very low As concentrations in water. The advantage of counting with molecular biomarkers early responding to low concentrations of As in a chronic exposure is that they may anticipate the irreversible damage at later developmental stages due to the constant oxidative challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2017.02.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!