A projection-based reformulation of the coincident site lattice Σ for arbitrary bicrystals at finite temperature.

Acta Crystallogr A Found Adv

Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, CO, USA.

Published: March 2017

The coincident site lattice and, specifically, the `Σ value' of a grain boundary are a ubiquitous metric for experimental classification of grain boundaries. However, the mathematical nature of Σ - a pathological function taking values of either an integer or infinity - has been relatively unexplored. This work presents a framework for interpreting Σ as the inverse of a projection defined using the standard L inner product over continuous fields that represent lattices. `Pre-mollifiers' are used to introduce thermal regularization in the context of the inner product, and a closed-form analytic result is derived. For all nonzero values of the regularization parameters, the formulation is mathematically smooth and differentiable, providing a tool for computationally determining experimental deviation from measured low-Σ boundaries at finite temperatures. It is verified that accurate Σ values are recovered for sufficiently low Σ boundaries, and that the numerical result either converges towards an integer value or diverges to infinity.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S205327331700122XDOI Listing

Publication Analysis

Top Keywords

coincident site
8
site lattice
8
inner product
8
projection-based reformulation
4
reformulation coincident
4
lattice arbitrary
4
arbitrary bicrystals
4
bicrystals finite
4
finite temperature
4
temperature coincident
4

Similar Publications

Introduction: Three-dimensional (3D) maps are useful for premature ventricular contraction (PVC) ablation. However, positional information changes compared with sinus rhythm when PVCs appear, rendering ablation difficult. We aimed to understand the spatial displacement characteristics of PVC ablation in 3D maps and the therapeutic effect after correction using the LAT-Hybrid function.

View Article and Find Full Text PDF

Expanding the flooding in Landsat across tidal systems model to Landsat 5-9 imagery for long-term marsh inundation analysis.

Sci Total Environ

January 2025

Center for Geospatial Research, Department of Geography, University of Georgia, 210 Field St. Room 204, Athens, GA 30602, United States of America.

Tidal flooding can significantly impact vegetation pixel reflectance of coastal salt marshes, presenting a problem for remote sensing studies of these highly productive ecosystems. The current study aimed to spatially and temporally expand our previously developed Flooding in Landsat Across Tidal Systems (FLATS) model to detect and analyze the long-term changes in flooded marsh pixels in Landsat 5-9 imagery. As the FLATS index is only calibrated for Landsat 8, our goal was to expand the use of FLATS to a greater range of Landsat imagery and facilitate the masking of flooded pixels in long-term time series of vegetation indices.

View Article and Find Full Text PDF

Human adenovirus type 36 (HAdV-D36) has been putatively linked to obesity in animals and has been associated with obesity in humans in some but not all studies. Despite extensive epidemiological research there is limited information about its receptor profile. We investigated the receptor portfolio of HAdV-D36 using a combined structural biology and virology approach.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Background: Hemodialysis vascular access predisposes patients to exit-site infections (ESIs) and bloodstream infections (BSIs), resulting in significant morbidity and mortality. The objective was to characterize hemodialysis catheter-related (CR) ESIs and BSIs while considering potential factors associated with infection.

Methods: The study period was selected to coincide with new CR-infection prevention measures at the midpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!