AI Article Synopsis

  • A new microscopy technique called S2MIM enhances regular microscopes by combining superresolution and multiplexing to achieve improved imaging.
  • This method builds on earlier techniques, specifically the SMIM approach, and transforms standard microscopes into superresolved holographic instruments.
  • The effectiveness of S2MIM was tested using an Olympus BX-60 microscope with specific resolution test targets, demonstrating its capability for high-resolution imaging.

Article Abstract

Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.42.000927DOI Listing

Publication Analysis

Top Keywords

superresolved spatially
8
spatially multiplexed
8
multiplexed interferometric
8
interferometric microscopy
8
superresolved
4
microscopy superresolution
4
superresolution capability
4
capability angular
4
angular time
4
time multiplexing
4

Similar Publications

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

Significance: Current super-resolution imaging techniques allow for a greater understanding of cellular structures; however, they are often complex or only have the ability to image a few cells at once. This small field of view (FOV) may not represent the behavior across the entire sample, and manual selection of regions of interest (ROIs) may introduce bias. It is possible to stitch and tile many small ROIs; however, this can result in artifacts across an image.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) can decipher fine details that are otherwise impossible using diffraction-limited microscopy. Often, the reconstructed super-resolved images suffer from noise, strong background and are prone to false detections that may impact quantitative imaging. To overcome these limitations, we propose a technique (corrSMLM) that recognizes and detects fortunate molecules (molecules with long blinking cycles) from the recorded data.

View Article and Find Full Text PDF

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

We present super-resolved coherent anti-Stokes Raman scattering (CARS) microscopy by implementing phase-resolved image scanning microscopy, achieving up to two-fold resolution increase as compared with a conventional CARS microscope. Phase-sensitivity is required for the standard pixel-reassignment procedure since the scattered field is coherent, thus the point-spread function is well-defined only for the field amplitude. We resolve the complex field by a simple add-on to the CARS setup enabling inline interferometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!