Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217393 | PMC |
http://dx.doi.org/10.3390/proteomes3040369 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Shandong First Medical University Affiliated Cancer Hospital, Jinan 250117, China. *Corresponding author, E-mail:
It has been popular and challenging to undertake researches on the delay of acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). As key cells for tumor initiation, cancer stem cells (CSC) play an important role in the process of resistance to EGFR-TKI. Although preliminary studies found that traditional Chinese medicine (TCM) could inhibit CSC properties and delay EGFR-TKI resistance, the specific molecular mechanism remains unclear.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Blood Transfusion, First Affiliated Hospital of Nanyang Medical College, Nanyang 473003, China.
Objective To investigate the effect of basic helix-loop-helix family member E40 (BHLHE40) on the invasion and migration of osteosarcoma (OS) cells, and to explore the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the biological behavior of OS mediated by BHLHE40, providing a scientific basis for targeted therapy of OS. Methods On the basis of clinical OS samples and OS cell lines, the expression differences of BHLHE40 between OS and adjacent tissues, as well as those between OS cells and normal osteoblast cell lines, were analyzed. BHLHE40 knockdown OS cells were obtained through shRNA transfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!