The porphyrin macrocyclic core features dynamic conformational transformations in free space because of its structural flexibility. Once attached to a substrate, the molecule-substrate interaction often restricts this flexibility and stabilizes the porphyrin in a specific conformation. Here using molecular dynamic and density-functional theory simulations and scanning tunneling microscopy and spectroscopy, we investigated the conformation relaxation and stabilization processes of two porphyrin derivatives (5,15-dibromophenyl-10,20-diphenylporphyrin, BrTPP, and 5,15-diphenylporphyrin, DPP) adsorbed on Au(111) and Pb(111) surfaces. We found that BrTPP adopts either dome or saddle conformations on Au(111) but only the saddle conformation on Pb(111), whereas DPP deforms to a ruffled conformation on Au(111). We also resolved the structural transformation pathway of BrTPP from the free-space conformations to the surface-anchored conformations. These findings provide unprecedented insights revealing the conformation adaptation process. We anticipate that our results may be useful for controlling the conformation of surface-anchored porphyrin molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b00007 | DOI Listing |
Sci Rep
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland.
The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Urology, Ji'an Third People's Hospital, Ji'an 343000, Jiangxi, China.
As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Gene regulation is inherently multiscale, but scale-adaptive machine learning methods that fully exploit this property in single-nucleus accessibility data are still lacking. Here, we develop ChromatinHD, a pair of scale-adaptive models that uses the raw accessibility data, without peak-calling or windows, to link regions to gene expression and determine differentially accessible chromatin. We show how ChromatinHD consistently outperforms existing peak and window-based approaches and find that this is due to a large number of uniquely captured, functional accessibility changes within and outside of putative cis-regulatory regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!