How tightly bound charge transfer (CT) excitons dissociate at organic donor-acceptor interfaces has been a long-standing question in the organic photovoltaics community. Recently, it has been proposed that exciton delocalization reduces the exciton binding energy and promotes exciton dissociation. In order to understand this mechanism, it is critical to resolve the evolution of the exciton's binding energy and coherent size with femtosecond time resolution. However, because the coherent size is just a few nanometers, it presents a major experimental challenge to capture the CT process simultaneously in the energy, spatial, and temporal domains. In this work, the challenge is overcome by using time-resolved photoemission spectroscopy. The spatial size and electronic energy of a manifold of CT states are resolved at the zinc phthalocyanine (ZnPc)-fullerene (C) donor-acceptor interface. It is found that CT at the interface first populates delocalized CT excitons with a coherent size of 4 nm. Then, this delocalized CT exciton relaxes in energy to produce CT states with delocalization sizes in the range of 1-3 nm. While the CT process from ZnPc to C occurs in about 150 fs after photoexcitation, the localization and energy relaxation occur in 2 ps. The multidimensional view on how CT excitons evolve in time, space, and energy provides key information to understand the exciton dissociation mechanism and to design nanostructures for effective charge separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b13312 | DOI Listing |
Int Ophthalmol
January 2025
Department of Ophthalmology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany.
Purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. The size and location of the tumor are decisive for brachytherapy with the β-emitting ruthenium-106 (Ru-106) plaque. The treatment of juxtapapillary and juxtafoveolar UM may be challenging because of the proximity or involvement of the macula and optic nerve and high recurrence rates.
View Article and Find Full Text PDFEye (Lond)
January 2025
Department of Translational Biomedicine Neuroscience, University of Bari "Aldo Moro", Bari, Italy.
Background: To compare the characteristics of type 1 macular neovascularization (MNV) and the surrounding choriocapillaris (CC) perfusion in patients with neovascular age-related macular degeneration (nAMD) versus those with pachychoroid neovasculopathy (PNV) using swept-source optical coherence tomography angiography (SS-OCTA).
Methods: This retrospective study included 64 treatment-naïve eyes (37 nAMD, 27 PNV) with type 1 MNV. SS-OCTA images were analysed to measure MNV area and perimeter, and CC flow deficits (FD) in five concentric rings surrounding the lesion.
Ophthalmic Physiol Opt
January 2025
Elite School of Optometry, Medical Research Foundation, Chennai, India.
Purpose: To investigate changes in fluid reservoir turbidity parameters over time and its influence on visual performance in eyes with ocular surface disorders (OSD) wearing scleral contact lenses (SL).
Methods: Thirteen eyes with OSD were assessed for corrected distance visual acuity, contrast sensitivity (CS) and fluid reservoir turbidity using anterior segment optical coherence tomography at baseline, after 5 min and 0.5, 1, 2, 3 and 4 h of SL wear on day 1 and after 1 month.
J Clin Neurophysiol
December 2024
Human Brain Mapping Program, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, U.S.A.; and.
Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.
Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.
J Chem Phys
January 2025
Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Coherent phase transformations in interstitial solid solutions or intercalation compounds with a miscibility gap are of practical relevance for energy storage materials and specifically for metal hydride or lithium-ion compound nanoparticles. Different conclusions on the size-dependence of the transformation conditions are reached by modeling or theory focusing on the impact of either one (internal, solid-state-) critical-point wetting of the nanoparticle surface or coherency constraints from solute-saturated surface layers. We report a hybrid numerical approach, combining atomistic grand canonical Monte Carlo simulation with a continuum mechanics analysis of coherency stress and modeling simultaneously wetting and mechanical constraints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!