The synthesis of 5-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-1-methyluracil (1, C-FMAU), an isostere of the potent antiviral and antitumor nucleoside 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)thymine (2'-fluoro-5-methyl-ara-U or FMAU), was achieved. Pseudouridine (2) was converted into 4,5'-anhydro-3'-O-acetyl-2'-O-triflylpseudouridine (4), which was treated with tris(dimethylamino)sulfur (1+) difluorotrimethylsilicate (TASF) to give 4,5'-anhydro-5-(3-O-acetyl-2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-1- methyluracil (5b) in 40% yield. Acid hydrolysis of the 4,5'-anhydro linkage of 5b with Dowex 50 (H+) afforded C-FMAU. The inhibitory activity of C-FMAU against HSV-1 and HSV-2 was about 10-fold less than that of FMAU in tissue culture. This compound, however, did not show significant activity in mice inoculated with HSV-1 or HSV-2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00395a023DOI Listing

Publication Analysis

Top Keywords

isostere potent
8
potent antiviral
8
hsv-1 hsv-2
8
nucleosides 146
4
146 1-methyl-5-2-deoxy-2-fluoro-beta-d-arabinofuranosyluracil
4
1-methyl-5-2-deoxy-2-fluoro-beta-d-arabinofuranosyluracil c-nucleoside
4
c-nucleoside isostere
4
antiviral agent
4
agent 1-2-deoxy-2-fluoro-beta-d-arabinofuranosylthymine
4
1-2-deoxy-2-fluoro-beta-d-arabinofuranosylthymine fmau
4

Similar Publications

Dual Inhibitors of SARS-CoV-2 3CL Protease and Human Cathepsin L Containing Glutamine Isosteres Are Anti-CoV-2 Agents.

J Am Chem Soc

January 2025

Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.

SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.

View Article and Find Full Text PDF

Diarylmethanes play, in part, a pivotal role in the design of highly potent, chiral, nonracemic drugs whose bioactivity is typically affected by the substitution pattern of their arene units. In this context, certain arenes such as -substituted benzenes or unsubstituted heteroarenes cause particular synthetic challenges, since such isosteric residues at the central methane carbon atom are typically indistinguishable for a chiral catalyst. Hence, the stereoselective incorporation of isosteric (hetero)arenes into chiral methane scaffolds requires the use of stoichiometrically differentiated building blocks, which is typically realized through preceding redox-modifying operations such as metalation or halogenation and thus associated with disadvantageous step- and redox-economic traits.

View Article and Find Full Text PDF
Article Synopsis
  • Cathepsins are important cysteine proteases involved in various cellular processes and play a significant role in pancreatic cancer progression.
  • Recent studies have focused on developing cathepsin inhibitors, particularly targeting cathepsin S, to improve cancer treatment effectiveness.
  • A new series of inhibitors based on fluorinated cinnamate compounds have shown strong potential against pancreatic cancer cell lines, demonstrating considerable antiproliferative effects.
View Article and Find Full Text PDF

Background: Epilepsy is a critically deep-rooted CNS disorder affecting above 50 million people all over the world. Thus, a safe and effective treatment that proves its worth in this ailment is urgently needed. Thiazolidine-4-ones possess the molecules to be used as anticonvulsants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!