Effects of anagrelide on platelet cAMP levels, cAMP-dependent protein kinase and thrombin-induced Ca++ fluxes.

J Pharmacol Exp Ther

Department of Cardiovascular Biology, Bristol-Myers Pharmaceutical Research and Development Division, Evansville, Indiana.

Published: November 1987

Anagrelide (BL-4162A, 6,7-dichloro-1,5-dihydroimidazo[2, 1-6] quinazolin-2[3H]one monohydrochloride hydrate) is a potent and broad spectrum inhibitor of platelet aggregation. Prior studies showed that anagrelide inhibited platelet cyclic AMP (cAMP) phosphodiesterase activity but did not appreciably elevate platelet cAMP levels. We examined the effects of anagrelide on washed human platelets and found that anagrelide caused significant elevation of cAMP levels. Anagrelide treatment also resulted in activation of the platelet cAMP-dependent protein kinase at anagrelide concentrations of 0.1 to 1 microgram/ml, which inhibited platelet aggregation but caused only small increases in platelet cAMP content. When whole platelets were incubated with radiolabeled phosphate, anagrelide increased phosphorylation of platelet proteins with relative molecular weights of 22, 26, 50 and 80 kilodaltons. The pattern of protein phosphorylation stimulated by anagrelide treatment was similar to that observed when the platelets were treated with forskolin. Anagrelide also inhibited the rise in intracellular Ca++ caused by thrombin, as measured using Fura-2-loaded platelets. The inhibition of increased intracellular Ca++ resulted from block of thrombin-induced mobilization of intracellular Ca++, as well as prevention of Ca++ influx through the plasma membrane. Anagrelide itself had no influence on inositol 1,4,5-trisphosphate-induced Caz5++ release from isolated platelet membrane vesicles. These studies suggest that anagrelide inhibits platelet phosphodiesterase activity in intact platelets resulting in an elevation in cAMP levels sufficient to activate the cAMP-dependent protein kinase and inhibit agonist-activated Ca++ fluxes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

camp levels
16
platelet camp
12
camp-dependent protein
12
protein kinase
12
intracellular ca++
12
anagrelide
11
platelet
10
effects anagrelide
8
ca++ fluxes
8
platelet aggregation
8

Similar Publications

MT1/cAMP/PKA Pathway in Melatonin-Regulated Sperm Capacitation.

Reprod Sci

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.

View Article and Find Full Text PDF

Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT Receptor Inverse Agonists.

ACS Chem Neurosci

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.

The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.

View Article and Find Full Text PDF

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

Discovery of Selenium-Containing Derivatives as Potent and Orally Bioavailable GLP-1R Agonists.

J Med Chem

January 2025

Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Glucagon-like peptide-1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. The development of orally bioavailable and long-acting small-molecule GLP-1R agonists is a pursuit in both academia and industry. Herein, new selenium (Se)-containing compounds were designed using a Se-oxygen bioisostere strategy on the danuglipron scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!