One of the major challenges in developing high-performance Li-O batteries is to understand the Li O formation and decomposition during battery cycling. In this study, this issue was investigated by synchrotron radiation powder X-ray diffraction. The evolution of Li O morphology and structure was observed under actual electrochemical conditions of battery operation. By quantitatively tracking Li O during discharge and charge, a two-step process was suggested for both growth and oxidation of Li O owing to different mechanisms during two stages of both oxygen reduction reaction and oxygen evolution reaction. From an observation of the anisotropic broadening of Li O in XRD patterns, it was inferred that disc-like Li O grains are formed rapidly in the first step of discharge. These grains can stack together so that they facilitate the nucleation and growth of toroidal Li O particles with a LiO -like surface, which could cause parasitic reactions and hinder the formation of Li O . During the charge process, Li O is firstly oxidized from the surface, followed by a delithiation process with a faster oxidation of the bulk by stripping the interlayer Li atoms to form an off-stoichiometric intermediate. This fundamental insight brings new information on the working mechanism of Li-O batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201601718 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
All-solid-state chloride-ion batteries promise high theoretical energy density and room-temperature operation. However, conventional Sn anodes suffer from low material utilization attributed to large particle size and volume expansion. Here, nano-sized Sn particles in an N-doped carbon framework are used as an anode, resulting in ∼12% higher capacity compared to conventional Sn, due to improved Sn utilization and suppression of volume expansion.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China. Electronic address:
Nanomaterials (Basel)
December 2024
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
The safety and cycle stability of lithium metal batteries (LMBs) under conditions of high cut-off voltage and fast charging put forward higher requirements for electrolytes. Here, a sulfonate-based deep eutectic electrolyte (DEE) resulting from the eutectic effect between solid sultone and lithium bis(trifluoromethanesulfonyl)imide without any other additives is reported. The intermolecular coordination effect triggers this eutectic phenomenon, as evidenced with nuclear magnetic resonance, and thus the electrochemical behavior of the DEE can be controlled by jointly regulating the coordination effects of F···H and Li···O intermolecular interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!