Peritoneal dissemination is the primary metastatic route of ovarian cancer (OvCa), and is often accompanied by the accumulation of ascitic fluid. The peritoneal cavity is lined by mesothelial cells (MCs), which can be converted into carcinoma-associated fibroblasts (CAFs) through mesothelial-to-mesenchymal transition (MMT). Here, we demonstrate that MCs isolated from ascitic fluid (AFMCs) of OvCa patients with peritoneal implants also undergo MMT and promote subcutaneous tumour growth in mice. RNA sequencing of AFMCs revealed that MMT-related pathways - including transforming growth factor (TGF)-β signalling - are differentially regulated, and a gene signature was verified in peritoneal implants from OvCa patients. In a mouse model, pre-induction of MMT resulted in increased peritoneal tumour growth, whereas interfering with the TGF-β receptor reduced metastasis. MC-derived CAFs showed activation of Smad-dependent TGF-β signalling, which was disrupted in OvCa cells, despite their elevated TGF-β production. Accordingly, targeting Smad-dependent signalling in the peritoneal pre-metastatic niche in mice reduced tumour colonization, suggesting that Smad-dependent MMT could be crucial in peritoneal carcinomatosis. Together, these results indicate that bidirectional communication between OvCa cells and MC-derived CAFs, via TGF-β-mediated MMT, seems to be crucial to form a suitable metastatic niche. We suggest MMT as a possible target for therapeutic intervention and a potential source of biomarkers for improving OvCa diagnosis and/or prognosis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468005PMC
http://dx.doi.org/10.1002/path.4889DOI Listing

Publication Analysis

Top Keywords

mesothelial-to-mesenchymal transition
8
peritoneal
8
ovarian cancer
8
ascitic fluid
8
ovca patients
8
peritoneal implants
8
tumour growth
8
mc-derived cafs
8
ovca cells
8
mmt crucial
8

Similar Publications

Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies.

View Article and Find Full Text PDF

Oxidative stress (OxSt) and inflammation are common in end-stage renal disease and dialysis patients; they are known risk factors for cardiovascular disease and mortality. In peritoneal dialysis (PD), OxSt and inflammation are even further increased compared to the already increased oxidative stress of their pre-dialysis phase. This is due to the high glucose-based solutions currently used, whose continuous contact with the peritoneal membrane can induce significant long-term morphological and functional changes (mesothelial to mesenchymal transition, thickening, neo-angiogenesis and fibrosis) of the peritoneal membrane.

View Article and Find Full Text PDF

Peritoneal fibrosis: from pathophysiological mechanism to medicine.

Front Physiol

September 2024

Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China.

Article Synopsis
  • * PF can impair kidney function and decrease the effectiveness of PD, potentially forcing patients to stop the treatment altogether.
  • * The review discusses the mechanisms behind PF, such as mesothelial-to-mesenchymal transition, inflammation, and angiogenesis, while also outlining future strategies to combat these issues.
View Article and Find Full Text PDF

Carcinoma-associated fibroblasts (CAFs) are highly accumulated in the tumor-surrounding stroma of primary epithelial ovarian cancer (OC). CAFs exert important functions for the vascularization, growth, and progression of OC cells. However, the origin of CAFs in primary OC had not yet been studied, and they were assumed to arise from the activation of resident fibroblasts.

View Article and Find Full Text PDF

Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!