Positive selection in the two-domain type 1 pilus adhesin FimH enhances fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium between these two conformational states, each of which engages mannose through distinct binding orientations. A FimH variant that only adopts the R state is severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder habitat has barrier(s) to R state-mediated colonization possibly conferred by the terminally differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric two-domain adhesin that evolved "moderate" affinity to optimize persistence in the bladder during UTI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302871 | PMC |
http://dx.doi.org/10.1126/sciadv.1601944 | DOI Listing |
J Chem Inf Model
January 2025
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
Sugars are ubiquitous in biology; they occur in all kingdoms of life. Despite their prevalence, they have often been somewhat neglected in studies of structure-dynamics-function relationships of macromolecules to which they are attached, with the exception of nucleic acids. This is largely due to the inherent difficulties of not only studying the conformational dynamics of sugars using experimental methods but indeed also resolving their static structures.
View Article and Find Full Text PDFSci Adv
January 2025
Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Several human disorders, including Alzheimer's disease (AD), are characterized by the aberrant formation of amyloid fibrils. In many cases, the amyloid core is flanked by disordered regions, known as fuzzy coat. The structural properties of fuzzy coats, and their interactions with their environments, however, have not been fully described to date.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic.
Molecular dynamics (MD) simulations are an important and well-established tool for investigating RNA structural dynamics, but their accuracy relies heavily on the quality of the employed force field (). In this work, we present a comprehensive evaluation of widely used pair-additive and polarizable RNA s using the challenging UUCG tetraloop (TL) benchmark system. Extensive standard MD simulations, initiated from the NMR structure of the 14-mer UUCG TL, revealed that most s did not maintain the native state, instead favoring alternative loop conformations.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Quantum-Si, Guilford, CT, USA.
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.
View Article and Find Full Text PDFTalanta
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!