Drug resistance in cancer is an unmet medical challenge and a major drawback for the failure of many chemotherapeutic drugs. Search for targeted, effective drug with minimum toxicity is an urgent need. Acridone which is an alkaloid derivative has been attributed as molecule in reversing drug resistance in cancer cells for a long time now. In the present investigation, an attempt has been made to explore the chemosensitizing ability of 2,4-dimethylacridones with alkyl side chain containing terminally substituted tertiary amino groups. Considering the structural features required for the MDR reversal activity, acridone derivatives have been synthesized with propyl and butyl side chain containing morpholinyl, piperidinyl, N-methylpiperazinyl, N,N-diethylamino, N-diethanolamino, N-[(β-hydroxylethyl)]piperazino at the terminus of the alkyl side chain. cLogP values for the synthesized compounds ranged from 2.96 to 4.72 for the propyl derivatives and 3.41 to 5.15 for the butyl derivatives. All the compounds were screened against breast cancer sensitive MCF7 and resistant MCF7/ADR cell lines. Compounds 12e and 12f have shown better cytotoxicity profiles with IC of 4 ± 0.05 and 2 ± 0.03 μM against MCF7 cells, 5.21 ± 0.13 and 2.56 ± 0.05 μM against MCF7/ADR cells. Photolabelling studies with [H]-azidopine and molecular docking studies have identified that 2,4-dimethylacridones have potential to modulate the P-gp mediated multidrug resistance. Docking studies identified that compounds have shown favorable interactions with P-gp. QSAR equation was derived for cytotoxicity vs molecular descriptors of acridone derivatives. Best models with good predictive ability have been generated with very high square correlation coefficient (R) values of 0.889, 0.964 and 0.983.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2017.02.022DOI Listing

Publication Analysis

Top Keywords

side chain
12
molecular docking
8
drug resistance
8
resistance cancer
8
alkyl side
8
acridone derivatives
8
docking studies
8
studies identified
8
design synthesis
4
synthesis biological
4

Similar Publications

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Peptide cyclization is a defining feature of many bioactive molecules, particularly in the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Although enzymes responsible for N- to C-terminal macrocyclization, lanthipeptide formation or heterocycle installation have been well documented, a diverse array of cyclases have been discovered that perform crosslinking of aromatic side chains. These enzymes form either biaryl linkages between two aromatic amino acids or a crosslink between one aliphatic amino acid and one aromatic amino acid.

View Article and Find Full Text PDF

Ganoderma lucidum is a traditional Chinese medicine used to treat Alzheimer's disease (AD), whose main active ingredient is polysaccharides. A heteropolysaccharide named GLPZ-1 was isolated from Ganoderma lucidum. GLPZ-1 (6.

View Article and Find Full Text PDF

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

Asiatic acid methyl ester, a new asiaticoside derivative, induces osteogenic differentiation of hPDLCs.

Arch Oral Biol

January 2025

Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellent in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, Thailand.

Objective: Asiaticoside has the capacity to induce osteogenic differentiation of human periodontal ligament cells (hPDLCs) through Wnt (Wingless-related integration site) signaling. A modified chemical structure (by removing glycoside side chain), referred to as asiatic acid methyl ester (AA1), has been constructed and evaluated for its capacity to induce osteogenic differentiation.

Design: hPDLCs viability was determined by MTT assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!